Measurements of the complete solvation response of coumarin 153 in ionic liquids and the accuracy of simple dielectric continuum predictions

Mark Maroncelli,^{*a} Xin-Xing Zhang,^{bc} Min Liang,^a Durba Roy^a and Nikolaus P. Ernsting^b

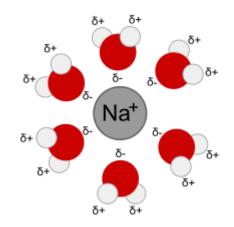
^aDepartments of Chemistry, The Pennsylvania State University, University Park, PA, USA. ^bHumboldt Universit€at zu Berlin, Germany ^cCollege of Physical Science, Nankai University, Tianjin, China

Faraday Discussions 2012

Seoncheol Cha

2012.4.28.Sat.

Liquids consisting of only cations and anions

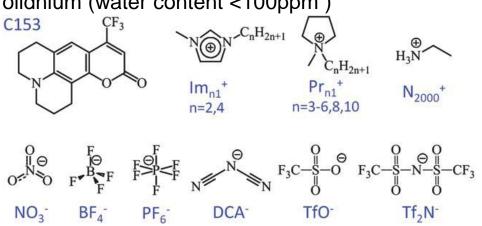

Properties of ionic liquids:

- Low- melting, broad liquid range
- They are neither volatile nor combustible
- Negligible vapor pressure, High solubility for many chemicals

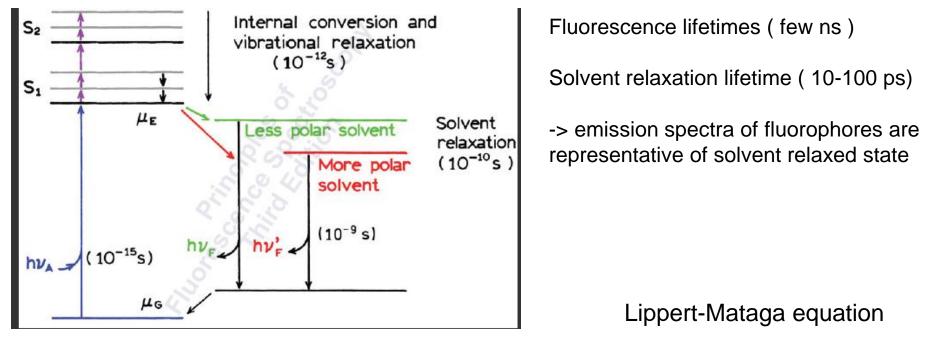
	Melting point/°C
[C₄mim][PF ₆]	10
[C ₄ mim][BF ₄]	-81
[C ₈ mim][BF ₄]	-60
[C ₂ mim][Tf ₂ N]	4

Solvation : response of a solvent to perturbations of a molecular solute

- important determinant of solvent effects on chemical reactions
- Good understanding in dipolar liquids
- Extend to ionic liquids


Sample

Probe dye – Coumarin 153 (C153, laser grade, Lambda Physik & Excition)


* Coumarin dye is highly sensitive to solvent polarity

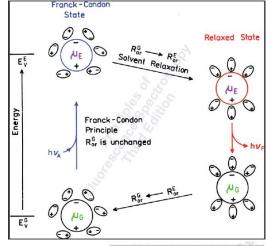
Cations

Methylimidazolium, Ethylammonium, Pyrrolidnium (water content <100ppm)

Fluorescence with solvent relaxation

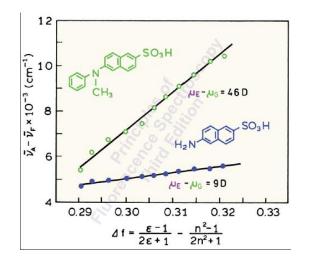
$$\bar{\nu}_A - \bar{\nu}_F = \frac{2}{hc} \left(\frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1}\right) \frac{(\mu_E - \mu_G)^2}{a^3}$$

 $E_{dipole} = -\mu F$ E_{dipole} : the energy of dipole in an electric field F : relative reaction field in the dielectric induced by the dipole

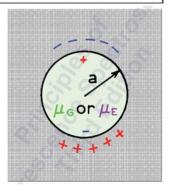

 $F = \frac{2\mu}{a^3}f$

f : polarizability of the solvent a : cavity radius

At high frequency $f(n) = \frac{n^2 - 1}{2n^2 + 1}$


$$\Delta f = \frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1}$$

At low frequency $f(\varepsilon) = \frac{\varepsilon - 1}{2\varepsilon + 1}$

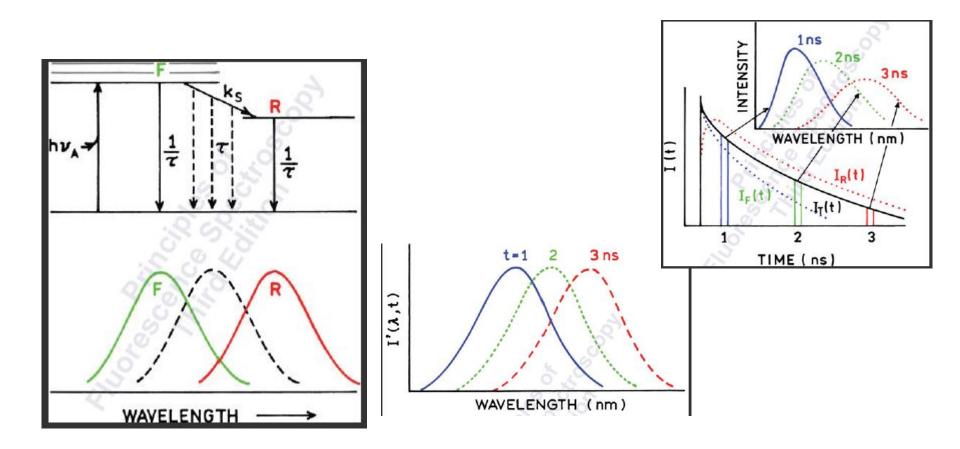

the Lippert-Mataga equation

 $F_{el}^{G} = \frac{2\mu_{G}}{a^{3}} f(n)$ $F_{el}^{E} = \frac{2\mu_{E}}{a^{3}} f(n)$ $F_{or}^{G} = \frac{2\mu_{G}}{a^{3}} \Delta f$ $F_{or}^{G} = \frac{2\mu_{E}}{a^{3}} \Delta f$

Lippert-Mataga equation

$$\bar{\nu}_A - \bar{\nu}_F = \frac{2}{hc} \left(\frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1} \right) \frac{(\mu_E - \mu_G)^2}{a^3}$$

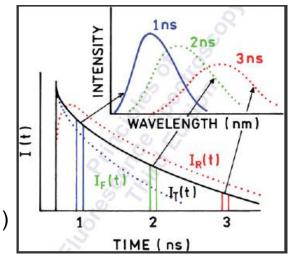
Relaxed State


Limitation (assumption)

. . .

Describing only polarity effect

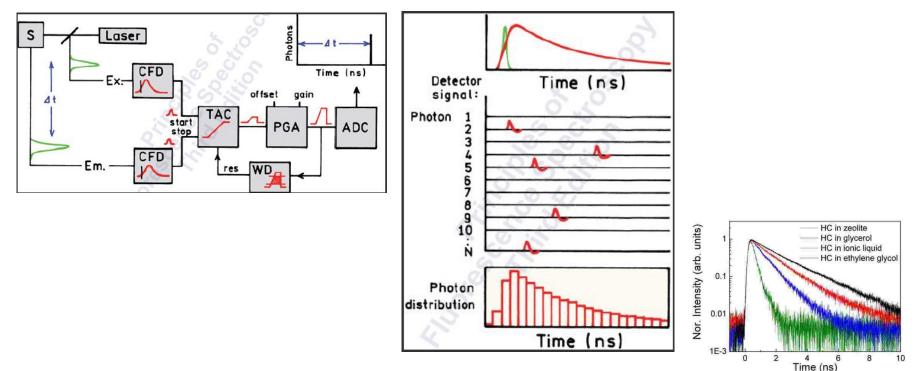
Spherical fluorophore No specific interaction between fluorophore and solvent Ignore polarizability of fluorophore Ground and excited state dipole moment point in the same direction


Dynamic Stokes shift

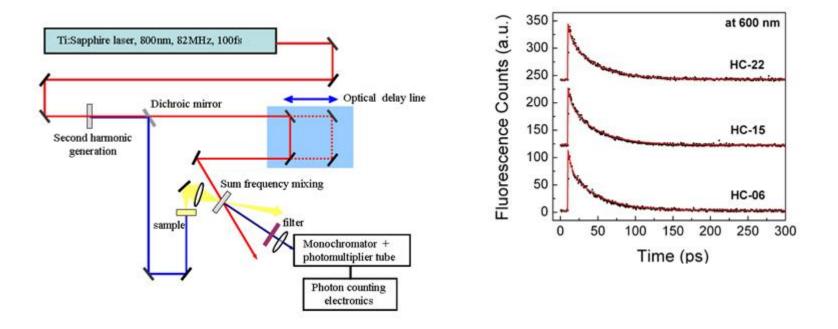
Dynamic Stokes shift

$$\tau_{S} \sim \tau_{D} \frac{2\varepsilon_{\infty} + \varepsilon_{C}}{2\varepsilon_{0} + \varepsilon_{C}} \sim \tau_{D} \frac{2n^{2} + 1}{2\varepsilon + 1} \sim \frac{n^{2}}{\varepsilon} \tau_{D}$$

- τ_S : spectral relaxation time
- τ_D : dielectric relaxation time
- ε_{C} : dielectric constant of the cavity containing the fluorophore (~1)

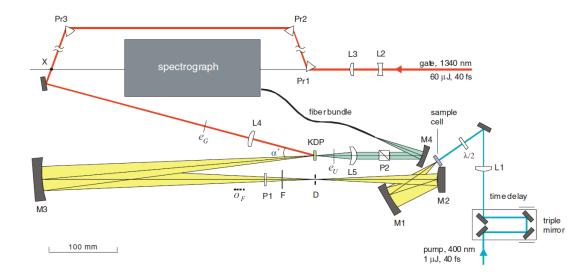


Steady-State measurement - Spex Fluorolog 212 spectrometer (2nm resolution)

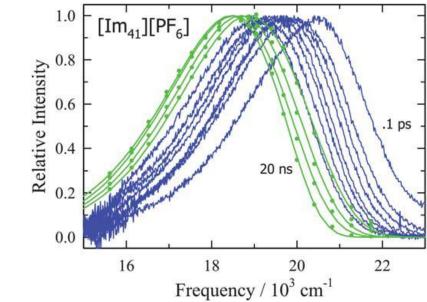

Ps-ns time-resolved measurement - Time-correlated single photon counting Frequency doubled Ti:Sapphire oscillator

Fs time-resolved measurement - Broadband fluorescence up-conversion spectrograph

Ps-ns time-resolved measurement - Time-correlated single photon counting

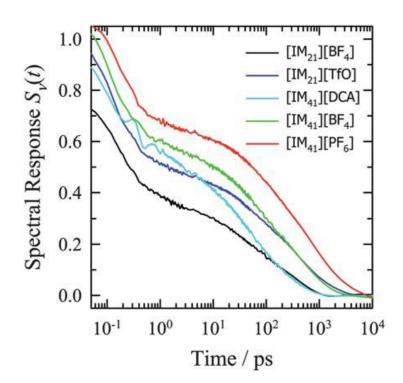


Fs time-resolved measurement - Broadband fluorescence up-conversion spectrograph



Broadband Fluorescence Up-conversion

Fs time-resolved measurement - Broadband fluorescence up-conversion spectrograph

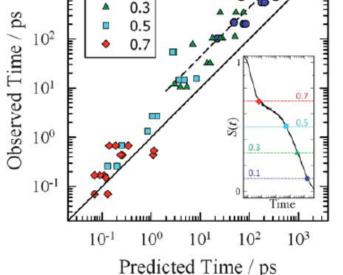

Time-resolved emission spectra of C153 in $[Im_{41}][PF_6]$ Blue : FLUPS (0.1 to 500 ps) Green : TCSPC (1 to 20 ns)

Correlation function

$$S_{\nu}(t) = \frac{\nu(t) - \nu(\infty)}{\nu(0) - \nu(\infty)}$$

Short time component : inertial properties of the solvent ions

Results – Comparing with simple dielectric model

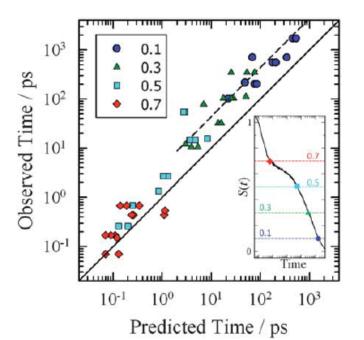

$$S_{\rm dc}(t) = \frac{L_p^{-1}\left\{\left[\hat{\chi}(\infty) - \hat{\chi}(p)\right]/p\right\}}{\hat{\chi}(\infty) - \hat{\chi}(0)}$$

$$\hat{\chi}(p) = \frac{\hat{\eta}(p) - 1}{\hat{\eta}(p) + \frac{1}{2}\varepsilon_{\mathrm{u}}}$$

 Table 1 Dielectric sources and frequency ranges covered^a

Ionic liquid	Frequency range	ε_0	ε	$n_{\rm D}$	$\Delta \varepsilon$	Reference
[Im ₂₁][BF ₄]	100 MHz-10 THz	15.9	1.94	1.391	0.0	T'0934
	1 MHz-20 GHz	13.6	6.7	1.411	4.7	N'1035
[Im ₂₁][TfO]	100 MHz-10 THz	17.7	2.12	1.433	0.1	B'11 ⁵⁹
[Im ₄₁][BF ₄]	100 MHz-3 THz	12.2	1.06	1.420	-1.0	S'0833
	200 MHz-20 GHz	11.0	4.08	1.421	2.1	S'0730
	1 MHz-20 GHz	14.1	5.45	1.421	3.4	N'1035
[Im ₄₁][PF ₆]	100 MHz-3 THz	11.8	2.1	1.409	0.1	St'0833
	1 MHz-20 GHz	14.1	4.8	1.407	2.8	N'1035
	40 MHz-40 GHz	12.4	3.26	1.409	1.3	M'10 ³⁶
[Im ₄₁][DCA]	100 MHz-10 THz	12.3	2.36	_		T'0934
	100 MHz-3 THz		2.13	_		St'0833
[Im ₄₁][Tf ₂ N]	200 MHz-20 GHz	11.5	3.03	1.427	1.0	D'0629
	1 MHz-20 GHz	13.7	4.25	1.426	2.2	N'10 ³⁵
	40 MHz-40 GHz	12.7	2.7	1.426	0.7	M'10 ³⁶
$[Pr_{41}][Tf_2N]$	200 MHz-20 GHz	11.7	2.42	1.423	0.4	W'07 ³¹
[N ₂₀₀₀][NO ₃]	10 MHz-1 THz (wet)	26.4	3.2	1.452	1.1	K'1032

^{*a*} All dielectric data correspond to a temperature of 25 °C. Mizoshiri *et al.* (M'10)³⁶ recorded data between 30–70 °C and in this case we extrapolated these data to 25 °C. (a) $\Delta \varepsilon = \varepsilon_{\infty} - n_{D}^2$.


 10^{3}

Dielectric continuum calculations

- good starting point for modeling the solvation response
- Systematically faster than expt. data

WHY?

The systematic error is related to neglect of spatial dispersion in the polarization response of ionic liquid.

