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Introduction

Question
1. Is it possible ellipsoidal microemulsion?

2. What is the origin of non-spherical structure?
- Curvature free energy (F) = Fg + Fbending + Fentropy

[C14MIM]Cl

1-octanol 1-octane
adding D2O
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France, 1932 – 2007

1991 Novel Prize (Physics)
“for discovering that methods developed for studying order phenomena in simple systems can be 

generalized to more complex forms of matter, in particular to liquids crystals and polymers”
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I. Distinct Features of Microemulsions

by adding oil

Emulsion with finite but small interfacial tension
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I. Distinct Features of Microemulsions

microemulsion

Ø don’t require the high shear conditions generally used in the formation of ordinary 
emulsions

Ø stable & clear (size below 100nm)

Ø mixture of two or more immiscible liquids

Ø unstable & cloudy appearance

Ø examples
- Mayonnaise, crema (in espresso)
- lotion, soybean oil
- in fire fighting : encapsulating the fuel
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I. Distinct Features of Microemulsions

Zero interfacial tension

Periodic array (macrocrystal) Distribution at random (microemulsions)

Emulsion
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II. A Selection of Experimental Facts

(ex.) sodium laurate + water

(micelles)

(lamellar)

(hexagonal)

(cubic)

Stabilizing forces for micelles

1. S (area per surfactant)

2. Curvature 1/R of the interface
> 0 for direct micelle
< 0 for inverse micelle
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II. A Selection of Experimental Facts

V : volume of a surfactant molecule
R0 : natural radius curvature
ns : number of surfactant molecule
l0 : length of extended surfactant molecule (~R0)

S

l0

sphere 4pR0
2 = nsS

4pR0
3/3 = nsV

l0 = 3V/ S

cylinder l0 ~ 2V/ S
lamellar l0 ~ V/ S
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II. A Selection of Experimental Facts

Main features for microemulsions : 
1. Area & curvature
2. Structure of the Interface

p : number of droplet
R : spherical radius
fw : volume of water

oil

water

R

Σ = 42∅ = 43/3 Σ = 3∅/
ü Valid for systems with a single surfactant as well as for the more frequent cases 

with surfactant + cosurfactant

ü A number of microemulsions transform without any apparent discontinuity from 
water/oil to oil/water

average curvature is not a leading feature of their stability



SM
O

S 
La

b

Sogang University

II. A Selection of Experimental Facts Exercise - prolate

oil

water

c d

Eccentricity e = (1-a2/c2)1/2

Σ = 22(1 − 2)(1 +   1 − 2)	∅ = 4 1 − 2 3/3 Σ =  ∅

eccentricity

x

fm = 2.1 w.t.% microemulsion
c = Rg - d = 26 Å (by Guinier plot) - 12 Å
fw = 1.14 ml
ns = 2.9 * 10-5 mol (IL) = 1.7*1019 molecules
S ~ 15 Å2 (IL : octanol = 1:2) 

or 24 Å2 (IL : octanol = 1:4)

S (IL + octanol)

d ~ 12 Å

N N

Cl

+

OH

OH

25 Å

x = 3.1 ~ 5.0
(e = 0.3 ~ 0.85)

fm = 4.2 w.t.%
Rg = 20 Å
x = 1.8 ~ 2.8

ExerciseExercise

 = 3 1 +   1 − 22
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II. A Selection of Experimental Facts

Main features for microemulsions : 
1. Area & curvature
2. Structure of the Interface

ü Studies of interfacial film
- Neutron scattering & hydrodynamic measurement : composition & thickness
- EPR & NMR relaxation & fluorescence depolarization

: local state of the surfactant
*EPR (Electron paramagnetic resonance)

The cosurfactant adsorbs strongly on the interface
- Typical ratio of surfactant : cosurfactant = 1: 2
- Near a limit of stability : cosurfactant/surfactant is often much 
reduced
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III. Existing Models – The Saturated Interface (Schulman)

1. The Saturated Interface (Schulman)
2. Limitation of the Schulman Argument
3. Entropy Effects for Flexible Interfaces
4. Curvature Effects
5. Long-Range Interactions

f (free energy) = fbulk + gowA + nsG(S)

Bare interface (without surfactant)
A (total area of interface) = ns S

Single interface of arbitrary shape separating the 
oil from the water

G(S) : a surfactant 
free energy

Langmuir surface pressure of the film :    P(S) = - ¶G / ¶S

Actual interfacial tension :   g = gow - P

Minimum free energy at fixed ns,
df / dS = d(gow (nsS))/ dS + nsdG(S)/dS

= gow ns - nsP = ns g = 0

S* satisfying gow = P(S*) : Saturated state
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III. Existing Models – Limitation of the Schulman Argument

1. The Saturated Interface (Schulman)
2. Limitation of the Schulman Argument
3. Entropy Effects for Flexible Interfaces
4. Curvature Effects
5. Long-Range Interactions

a. Entropy effects
- Associated entropy is very small
- But all other contributions to the free energy are also small

b. Curvature energies
- Weak and do not affect the local properties (ex. S) very much
- But they influence the large-scale properties and the phase equilibria

c. Electrostatic energies
- Play a role in the stability of swollen micelles of ionic surfactants

d. Interactions between droplets
- tend to favor ordered structures or even to promote droplet coalescence
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1. The Saturated Interface (Schulman)
2. Limitation of the Schulman Argument
3. Entropy Effects for Flexible Interfaces
4. Curvature Effects
5. Long-Range Interactions

area : xk
2

Persistence length in the interface : xk

oil

water

c
b

a

a-b : no interface & no energy
b-c : free energy contribution gxk

2

f (free energy) = fbulk + gowA + nsG(S)

ms (chemical potential of surfactant) = df /dns
= gow dA/dns + G(S) = (g + P(S))S + G(S)
= P(S)S + G(S)

g(S) : depends ultimately on ms

III. Existing Models – Entropy Effects for Flexible Interfaces

(xk ~ 100 Å for common interface)
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III. Existing Models – Entropy Effects for Flexible Interfaces

1. The Saturated Interface (Schulman)
2. Limitation of the Schulman Argument
3. Entropy Effects for Flexible Interfaces
4. Curvature Effects
5. Long-Range Interactions

Lattice Gas Model
oil (or water) regions : do not look like an assembly of cubes
lattice gas model : keeps some essential feature of a random surface

g xk
2 < gc xk

2 = a kbT : single phase
(a = 0.44 for a simple cubic lattice)

g xk
2 > gc xk

2 = a kbT : multi phase

General validity
a. The values of g involved are weak
b. Phase separation : because of a balance between interfacial entropy and 
interfacial energy
c. The region of phase separation : g > gc (low surfactant content)
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III. Existing Models – Curvature Effects

1. The Saturated Interface (Schulman)
2. Limitation of the Schulman Argument
3. Entropy Effects for Flexible Interfaces
4. Curvature Effects
5. Long-Range Interactions

ü Schulman description ignores all energies associated with the curvature of the 
interface.

ü For many problems involving fluid/fluid interfaces : Fg dominates

ü When g → 0 : curvature effects become relevant

ü For a curvature 1/R, curvature energy per unit area

 =  -  +  1/R0 : spontaneous curvature
K : rigidity of interface (dimension of energy)

(holds only if R and R0 are much larger than the interfacial film thickness L)
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III. Existing Models – Curvature Effects

1. The Saturated Interface (Schulman)
2. Limitation of the Schulman Argument
3. Entropy Effects for Flexible Interfaces
4. Curvature Effects
5. Long-Range Interactions

 =  -  + 
ü For ionic surfactants the steric considerations of Ninham and Mitchell may give 

an estimate of the spontaneous curvature.

ü Addition of cosurfactant may act strongly on 1/R0 and also on K.
Theoretical two effects : simple wedge effect & concentration effect

(1) Simple wedge effect
- Mitchell and Ninham : main role of cosurfactant is to change R0

(different size of amphiphile molecules change its natural curvature)
- Mitchell and Ninham, J. Chem. Soc., Faraday Trans. 2 77, 601 (1981)

- de Gennes and Taupin : can adsorb and modify R0, 
but only a few are efficient to induce microemulsions

(2) Concentration effect
- cosurfactant may migrate toward the regions of strong curvature : decreasing rigidity
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III. Existing Models – Curvature Effects

1. The Saturated Interface (Schulman)
2. Limitation of the Schulman Argument
3. Entropy Effects for Flexible Interfaces
4. Curvature Effects
5. Long-Range Interactions

Robbins writes the free energy Fd of one droplet in the form = (42)-  4 + 2 +  

 =  -  + 

Related to the chemical potential of the inner constituent.
l = 0 for w/o in equilibrium with water

Optimal radius R by minimization of Fd and reaches the condition/= (8)-4/0 = 0  = /(20)
This procedure works remarkably well; both the estimates of R and g are quite good 
for a number of nonionic surfactants.

All the discussion assumes droplets which are not far from spherical and rather 
monodisperse. But we should keep in mind that, whenever R > xk, the shapes must 
be strongly nonspherical.
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IV. The Role of Flexibility – Comparison with Red Blood Cells

1. Comparison with Red Blood Cells
2. Statistics of a Random Interface  =  -  + 

Two fundamental constants are associated with a saturated interface; the spontaneous 
curvature 1/R0 and the curvature elastic constant K.

Models for red blood cells
The general idea is that, with g = 0, we have giant fluctuations of the cell shape, 
which become observable (under phase contrast) with an optical microscope
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IV. The Role of Flexibility – Statistics of a Random Interface

1. Comparison with Red Blood Cells
2. Statistics of a Random Interface

Assume that our interface has a negligible spontaneous curvature (1/R0 → 0) and is 
close to a certain reference plane (xy). 

The distances between the plane and the interface will be called z(xy). 
The curvature is then  = z + z ≡ ∆˔z

 =  -  + 

 =  ∆˔z 22 =4 z 22
Where we have gone to two-dimensional Fourier transforms

z =  	  	 ( +  )

z(xy)

x

y

xD

yD


