
freely jointed chain for Force-extension curves 
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In the presence of a force, F, the segments tend to align in the direction of the force. 

 

Opposing the  stretching is the tendency of the chain to maximize its entropy.      

Extension corresponds to the equilibrium.    

 

We want know that relation of  the external force and the entropic elastic force of the chain.     

Why we study this subject? 



Freely jointed chain model (briefly) 

Head in one direction for length a  
 

then turn in any direction for length a 

Completely straight, unstretchable.  

 

No thermal fluctuations away from straight line are allowed 

 

The polymer can only disorder at the joints between segments 

 

a= Kuhn length = 0.5P  
 

where P= Persistence Length 
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Worm-like chain model(briefly) 

Directed random walk"- segments are correlated, polymer chains intermediate 
between a rigid rod and a flexible coil (e.g. DNA) 

takes into account both local stiffness and long range flexibility 

chain is treated as an isotropic, homogeneous elastic rod whose trajectory 
varies continuously and smoothly through space as opposed to the jagged 
contours of the FJC 

p= persistence length  

 

length over which statistical segments remain 

directionally correlated in space 
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is  tangent vector at a distance  s
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Distribution of end to end vectors 

be the number of different possible trajectories for a position x in N steps  
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Each step has two possibilities, which are independent from step to step 
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probability distribution function  
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Rewrite probability distribution function in 1-D 

Probability distribution function in 3-D  
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Free energy of FJC model 

1-D case 

Entropy S is 

lnS k 

K : Boltzmann constant ,  Ω : number of states 

( , )N R as the number of conformations of a freely jointed chain of N monomers  

with end to end vector R 

Rewrite S is ( , ) ln ( , )S N R k N R 

The probability distribution function is the fraction of all conformations  

that actually have an end to end vector R between R and R+dR 
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Probability distribution is  

We obtain entropy 
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Depend only on the number of monomers N 

Helmholtz free energy of the chain  
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We obtain free energy 
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Free energy of the chain 

Both ends at the same point 



Finally, we obtain the force-extension equation 
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3-D case (using same method such as 1-D case) 

This is like a simple elastic spring  
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This equation also like a simple elastic spring  



Other calculate 

The sum of the Boltzmann factors over all possible conformations of the chain 

Partition function is 
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The sum over all possible conformations of a freely jointed chain corresponds to the  

integral over all possible orientations of all bond vectors of the chain 
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notation  𝑁𝑖=1 denotes the product of N terms 

Z component of the end-to-end vector can be represented as the sum of the projections of  

all bond vectors onto the z axis 
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Calculate partition fuction 
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Gibbs free energy G can be directly calculated from partition function 
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Average end to end distance 
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WLC force versus extension 

2

1 1

4(1 / ) 4B

fP z

k T L z L
  



This is asymptotically exact in the large and small force limits  


