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ABSTRACT: Ion adsorption and transfer at charged interfaces play key roles

-;- W -
in various industrial and environmental processes. Molecular scale details of < e ;; § .I:
ion—ion, ion—water, and ion—surface interactions are still debated. Complex g § %’ © § surrace
ions, such as SCN™ and SeCN~, are particularly interesting due to their £ £ s b £ RV
unexpected adsorption trends. Here, we combine vibrational sum frequency g ‘é 5 > g ¢ X Ray prOOfS the
generation (VSEG) spectroscopy and surface-sensitive synchrotron X-ray & & | ¥ - -
studies to provide a detailed description of SeCN™ adsorption at a floating 0.0TB< 0020 0024 0628 0032 > 2000 200 2700 pOpUIatlon Of SeCN at
charged monolayer. Polarimetry studies show that the average orientation of TNNQ (A7) Wavenumber (car) I I
SeCN™ anions with respect to the surface normal decreases from 45° to 22° - the Inte rface at d Iﬁe rent
with the increasing KSeCN concentration. Interfacial SeCN™ coverage . conce ntI’atIOn
saturates at very low bulk concentrations, but their orientational organization, °
distribution between Stern and diffuse layers, and effects on the hydrogen- ® 0:0 DPTAP_KSeCN Not
bonding network of the interfacial water continue to change with increasing j:g
bulk KSeCN concentration. These results show that the increasing chemical = even decrease OH
potential may lead to further reorganization of the adsorbed ions, even though i i
the total interfacial ion population does not change. The reorganization of the Bulk |ntenS|ty but al SO ShOW
interfacial ions and the water may be very important in chemical separations of 1
heavy metals, where metal—anion complexes drive the selective ion transfer at aqueous interfaces. peak at 3700 cmr (free
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dX-ray fluorescence (XRF) and X-ray reflectivity (XRR) (Woongmo’s thesis)

Reflectivity
: O X-ray energy 8.044 keV
STit ~1 mm Monitor . Monochromator
Detector it ~1 E Slit $1~0.1 mm peeee d X-ray wavelength A =
Fluorescence ~== 1.542 A

dQ, = 4n sin o/A : wave
vector,

O o:inciden angle
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where C is a scale factor. #(Q,) and D(Q,) are calculated
Fresnel amplitude transmission coefficient at the ideally flat and
sharp air/water interface®* and X-ray penetration depth normal
to the surface.”> When « is larger than «, fluorescence intensity




dX-ray fluorescence near total reflection (XFNTR)

J. Phys. Chem. B 2014, 118, 1248612500
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and the linear absorption coefficient of the top phase (Helium gas in our case). We do the
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species (Se atoms 1n our case). Variation of I(«;, z) for a few angles above and below the critical
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ADPTAP-KSeCN by XFNTR
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< Below critical angle (Q,~ 0.022 A1) intensity increases
linearly due to anion adsorption at the interface.

“[SeCN-] < 0.5 mM, intensity decreases (above Q.) due to
decreasing transmission and very small bulk
concentration.

¢ [SeCN-]=0.5 mM, number of SeCN- anions Is saturated
due to neutrality between positively charged DPTAP and
negatively anions

“* Above Q. does not mention the increasing after 0.5 mM !!
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ASummary of XFNTR results 25 mM KSeCN without DPTAP
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dComparing with woongmo’s data
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UDPTAP-KSeCN by SFG at different polarizations
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UDPTAP-KSeCN by SFG at different polarizations
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dX-ray reflectivity intensity (R) normalize to Fresnel reflectivity (R;) for an
Ideally flat interface
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dComparing with woongmo’s data
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JDPTAP-KSeCN at OH regions

T [ OH intensities decreased due to charge
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L Anions moved from diffuse to stern layer after increasing concentration
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[ Discussion of the appearance of 3700 cm- band (2 possible reasons)

“» Monolayer is disturbed and make a space ¢ Complex binding between SeCN™:H,0O as
for free OH but that is ruled out by the data the increasing of anions at the stern layer
below.
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Previous study DPTAP-NaNO,; /NaSCN

DPTAP-NaNO, DPTAP-NaSCN
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Finally, as the signal intensity from the bonded OH region
decreases, a free OH peak appears, indicating disruption in the
monolayer surface coverage. The shift and narrowing of the




Previous study DPTAP-PACI,>/PtCl 2
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Figure 5. (a) VSFG spectra showing the —OH stretching modes of
water. The symbols and colors correspond to different sample
conditions as follows: red triangles—DPTAP spread on 5 mM
PdCL*" in 0.5 M LiCl, pH = 2; green squares—DPTAP spread on §
mM PtCl*™ in 0.5 M LiC], pH = 2; orange inverted triangles—
DPTAP spread on 0.5 M LiCl, pH = 2; and blue circles—air/water
interface. (b) VSFG spectra showing the variation of the ATWHB peak
with the concentration of PACL,* in the subphase. Symbols represent
experimental data, whereas solid lines are fits to the experimental data
obtained with eq 6. All samples contain 0.5 M LiCl and are kept at pH

= 2.
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¢ The peak at ~ 3600 cm? is
named as the anion-induced
weak hydrogen-bonded
(AIWHB).
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dFirst finding AIWHB peak _
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dIn summary - .
Position of anions

¢ Diffuse layer < Stern layer

¢ Diffuse layer ¢ Diffuse layer > Stern layer and appearance of 3700
cm band
(a) 0.00025 mM (b) 2.5 mM (c) 25 mM
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