Graphene Visualizes the First Water Adlayers on Mica at Ambient Conditions

Ke Xu, Peigen Cao, James R. Heath

Science 329, 1188 (2010)
Techniques not suited to study of water in room-temperature

Scanning tunneling microscopy (STM) atomic force microscopy (AFM)

Need ultra high vacuum

the capillary menisci formation:

Scanning polarization force microscopy (SPFM) : the lateral resolution of SPFM is relatively low
AFM study of the water adlayer structures on mica under ambient conditions

A difficult water adlayer`s mobility

the use of monolayer graphene sheets (ultrathin coating)
(the standard method of mechanical exfoliation)

tightly seal Stably fix

A schematic of graphene
Materials

A schematic of graphene

A structure of ordinary ice (~0°C)

muscovite: mica structure

http://www.britannica.com/EBchecked/topic/398688/muscovite
Humidity-dependent experiments

Ambient humidity experiment (RH=36% to 42%):
- Graphene deposite on mica at ambient conditions

Low humidity experiment (RH = 1.8% to 2.1):
- Mica disks : heat in air at 200 °C for 10 min
 - mica surface cleave
 - equilibrate for ~5 min
 - a continuous flow of ultra-high purity argon
- Graphene deposite in glove-bag
high humidity experiment (RH = 89±2%):

Mica disks

↓

chamber
- beaker of water is the center of chamber
- mica surface cleave
- equilibrate for ~5 min

↓

Graphene deposite in chamber
In ambient humidity

(C) AFM image of a monolayer graphene sheet deposited on mica.

- Polygonal shapes
- Island with multiple 120° corners
- Monolayer graphene sheet is folded

- Dotlike thicker areas are surface defects
- Surface defects attract water

The first water adlayer has an icelike structure on the substrate.
In low humidity experiment (RH = 1.8% to 2.1%)

No islandlike structures
- dotlike structures
- surface defects
- no reliably detectable water adsorption on mica surfaces

High density of surface defects
- most islands connect nearby defects
- the importance of defects for water adlayer nucleation

Height of ~0.37 nm indicates single adlayer of water
In high humidity experiment (RH = 89±2%)

- First water adlayer: monolayer graphene with a thickness of 0.7 nm.
- Close-up of the pinholes.
- Image of monolayer graphene deposited on mica with a high density of surface defects.
- Liquidlike structure.
- Bulgelike features.
- Close-up of the second adlayer islands.
- SPFM results: ~120° polygonal shapes.
- Water adlayers grew epitaxially on mica in a layer-by-layer fashion.

- Submonolayers form atomically flat, faceted islands of height 0.37 ± 0.02 nm, in agreement with the height of a monolayer of ice.

- In higher relative humidity, the second adlayers also appear icelike, and thicker layers appear liquidlike.

- Surface defects serve as nucleation centers for the formation of both the first and the second adlayers.