

Contents lists available at ScienceDirect

Journal of Photochemistry and Photobiology A: Chemistry

Comparing electroluminescence efficiency and photoluminescence quantum yield of fluorene-based π -conjugated copolymers with narrow band-gap comonomers

Jungwook Hana, Jongdeok Ana, Chan Ima,c,*, Nam Sung Chob, Hong Koo Shimb, Tetsuro Majimac

^a Department of Chemistry, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea

Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea

^cThe Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan

Introduction

π -conjugation

FIG. 1. Quasiparticle band structures of trans-polyacetylene (a) and of PPV (b), as calculated within the GW approximation. The vacuum level is at 0 eV.

PRL 82 1959 (1999)

Materials

Fluorene (From wikipedia)

9,9-bis(2'-ethylhexyl)fluorene

Fig. 1. Chemical structure of PFTCVBx.

2,5-bis(2-(thienyl)-1-cyanoviyl)-1-(2"-ethylhexyloxy)-4-methoxybenzene

in chloroform

 1.4×10^{-4} wt% for UV-Vis

 $1.6 \times 10^{-5} \text{wt}\% \text{ for PL}$

0.8wt% for spin-cast

Monomer

NIST Chemistry WebBook (http://webbook.nist.gov/chemistry)

Figure 3. UV-vis absorption spectra of the monomers-R1, R2, R3, and R4 in the chloroform solutions.

Figure 4. Photoluminescence spectra of the monomers-R1, R2, R3, and R4 in the chloroform solutions.

Macromolecules 37 5265 (2004)

Copolymer, UV-Visible Absorption

Fig. 2. UV-vis spectra of PFTCVBx solution samples. (Inset: plot of the absorbance maxima as a function of the TCVB ratio in mol%.)

- 1. Intensities of Blue Bands are decreased with TCVB concentration
- 2. Intensities of Red Bands are increased with TCVB concentration

Blue Bands -> EHF Red bands -> TCVB

Copolymer, UV-Visible Absorption

Fig. 3. Normalized UV-vis spectra of PFTCVBx as (A) diluted chloroform solutions and (B) spin-cast films. (Same symbols as in Fig. 2; *inset A*: magnification at the absorption edges of UV-vis spectra.)

Copolymer, Photoluminescence

TCVB-induced PL quenching

- (1) FRET
- (2) "blinking"
- (3) Photochemical oxidation

Fig. 4. PL spectra of PFTCVBx solution samples with excitation at (A) 375 nm and (B) 445 nm. *Inset A*: magnified PL spectra for the wavelength range of 450–650 nm; *inset B*: plot of PL intensity as a function of the TCVB ratio in mol%. (Same symbols as in Fig. 2.)

Wavelength (nm)

500

700

600

3.5

B3sol

R3sol

R4sol

400

Copolymer, Photoluminescence

Fig. 5. PL spectra of PFTCVBx film samples with excitation at (A) $375\,\mathrm{nm}$ and (B) $445\,\mathrm{nm}$; inset: PL intensity (arbitrary units) as a function of the TCVB ratio in mol%. (Same symbols as in Fig. 2.)

Copolymer, Photoluminescence

Red shift of Red bands Extended DOF

Dissappearance of vibronic fine structures (C=C) Stretch mode

Fig. 4. PL spectra of PFTCVBx solution samples with excitation at (A) 375 nm and (B) 445 nm. *Inset A*: magnified PL spectra for the wavelength range of 450–650 nm; *inset B*: plot of PL intensity as a function of the TCVB ratio in mol%. (Same symbols as in Fig. 2.)

Fig. 5. PL spectra of PFTCVBx film samples with excitation at (A) 375 nm and (B) 445 nm; *inset*: PL intensity (arbitrary units) as a function of the TCVB ratio in mol%. (Same symbols as in Fig. 2.)

Red Sites & Blue Sites

Solutions & Films

Fig. 7. PL QYs as a function of the TCVB ratio in mol% (PL QY: data from [6]).

Comparison of the PL QY and device effciency

Fig. 7. PL QYs as a function of the TCVB ratio in mol% (PL QY: data from [6]).

Fig. 8. PL QYs and normalized EL intensities as a function of the TCVB ratio in mol%.

Quenching