Journal club

Droplet polydispersity and shape fluctuations in AOT [bis(2-ethylhexyl)sulfosuccinate sodium salt] microemulsions studied by contrast variation small -angle neutron scattering

L. Arleth and J. S. Pedersen, *Phys. Rev. E* **63**, 61406 (2001)

Yoonnam Jeon (2016. 01. 23)

RELATED WORK Conformation change by adding water

Kang et. al., J. Phys. Chem. C 117, 14332 (2013) * No direct evidence of ellipsoidal structure

Model fitting: sphere

RELATED WORK Highly polydispersed microemulsion

Model	Volume density	Core radius (Å)	Shell thickness (Å)	Polydispersity
Mono	0.021	8	15	0
Poly-core	0.035	10	9	0.37

Kang et. al., *Phys. Chem. Chem. Phys.* **17**, 27833 (2015)

Question

0.37 polydispersity is quite high

SANS:

Ellipsoids is equivalent to that of a distribution of **poly disperse spheres**

Arleth and Pedersen,

Phys. Rev. E **63**, 061406 (2001)

INTRODUCTION

Water/alkane/AOT(ionic surfactant) – less simple in practice

Aim To get information about the <u>polydispersity</u> and <u>shape fluctuations</u> of the droplets

INTRODUCTION

Polydispersity (σ / R_{av})

- AOT/water/hexane : 12% (Ricka et. al. 1991)
- AOT/water/iso-octane : 19% (Christ and Schurtenberger et. al. 1994)
- AOT/water/decane : 10% (Christ and Schurtenberger et. al. 1994)
- \triangleright Theoritical prediction : 0.1 0.2
- \triangleright Experimental reports : 10 45% (most often : 15 25%)

For nonionic surfactant (C_iE_i)

- polydispersity is independent of alkane type (Pedersen and cowokers, 1996)

Aim The polydispersity and shape fluctuations using SANS

SANS:

Ellipsoids is equivalent to that of a distribution of poly disperse spheres

EXPERIMENTS

> Sample preparation

- AOT + water $\sim 5\%$ (water / AOT = 38 molar ratio)
- Alkanes : decane & iso-octane

> Small Angle Neutron Scattering (SANS)

- Risø National Laboratory
- $0.004 < q < 0.26 \text{ Å}^{-1}$
- Contrast matching exp. mixing with *h* and *d*-alkanes

h-alkane

d-alkane

> Conductivity measurement

- CDM80 conductivity meter

cathode and anode: Pt

CONDUCTIVITY MEASURMENT Transition of conductivity

> Temperature dependent conductivity

- Well known: AOT/water/alkane

- larger aggregates of droplets are formed

high T

- allow the counterions of the AOT to move round

- > Slow decreased conductivity Have not been able to find such an effect
- > Main interest: Position of transition
- From w/o microemulsions to microemulsions with connected water domains

CONDUCTIVITY MEASURMENT Transition of conductivity

Sample	$T_{off\text{-}set}$ (°C)	T_{max} (°C)	
AOT/H ₂ O/h-dec	12	17	
AOT/D ₂ O/h-dec	19	25	
AOT/D ₂ O/d-dec	20	26	
AOT/D2O/h-iso	28	34	

jump: 9°C

\triangleright Conductivity jump by changing solvent (decane \rightarrow isooctane)

- agreement with former measurement
- connected to the **decreasing penetration of solvent** into the surfactant layer with increasing molecular weight ($m_{decane} > m_{isooctane}$)

> Conductivity jump with heavy water

- suggest : water structure plays a very import role in the microemulsion phase behavior

ANALYSIS OF SANS Temperature dependent pair distribution fn.

> Increased scattering at low q with increasing temp.

- size of the droplets increases

> For the same contrast

- spherical : give rise to a bell shaped curve
- elongated (or polydisperse):p(r) will have a tail and go to zero at higher r

ANALYSIS OF SANS Form and Structure factors

> Form factor

- sphere

$$F_1(qR) = 3 \frac{\sin(qR) - qR\cos(qR)}{(qR)^3}$$

- ellipsoid

$$\langle F(q)^2 \rangle_0 = \mathbb{E}_0^{\pi/2} \begin{pmatrix} V_0(\rho_c - \rho_s) F_1(qR_c\sqrt{\sin^{-2}\theta + \varepsilon_c^2 \cos^{-2}(V_c + V_s)(\rho_s - \rho_{solvent})} \\ \times F_1(qR_s\sqrt{\sin^{-2}\theta + \varepsilon_s^2 \cos^{-2}})^2 \end{pmatrix} \sin^{-\theta}\theta d\theta$$

> Structure factor

- Did not use the model that includes stickiness of the spheres
- Structure factor for a distribution of polydisperse hard spheres

ANALYSIS OF SANS Contrast matching exp.

ANALYSIS OF SANS Contrast matching exp.

Kang et. al., Phys. Chem. Chem. Phys. 17, 27833 (2015)

RESULTS & DISCUSSION Contrast matching point

$$ightharpoonup$$
 Model calculation of I(0) $f(0) = V_c(\rho_c \ \square \ \rho_s) + (V_c + V_s)(\rho_s \ \square \ \rho_{solvent})$: form factor

If the droplets are monodisperse (same composition and same ρ_c , ρ_s)

matched out at same $ho_{
m solvent}$

Depth: Mainly determined by σ/R

Position: Mainly determined by composition

of core

Absolute intensity: Mainly determined by

mean radius

RESULTS & DISCUSSION Contrast matching point

> Experimental values of I(0) with least-squares fit

Parameter	$AOT/D_2O/dec$	AOT/D ₂ O/iso
R _{av} (Å)	61.91±1.1	56.34±1.0
σ/R_{av}	0.094 ± 0.009	0.120 ± 0.010
Purity _{D2O}	0.928 ± 0.004	0.923 ± 0.004
Purity _{D2O} A_{head} (Å ²)	54.9±1.2	60.7 ± 1.2

Comparable with the value determined by contrast variation light scattering

- Hofmeier and cowokers, $\sigma/R_{av} = 12\%$ in the AOT/water/hexane
- Christ and Schurtenberger, $\sigma/R_{\rm av} = 10\%$ in the AOT/water/decane

RESULTS & DISCUSSION SANS data fitting

data & model fitted to the I(0)

At higher q

modeled I(0) is much more oscillatory than the experimental I(q)

The droplets are **more polydisperse** than indicated by the I(0) data **or** they are **nonspherical**

RESULTS & DISCUSSION Size of shape fluctuation

> Angular dependent radius

with, fluctuation amplitude u_{lm} , spherical harmonics Y_{lm}

$$R(\Omega) = R_{av} \left[1 + \sum u_{lm} Y_{lm}(\Omega) \right]$$

deviation from sphere

$$u_{00}Y_{00}(\Omega) : polydispersity term u_{2m}Y_{2m}(\Omega) : first order shape fluctuation term$$

$$\int_{-\infty}^{\infty} \frac{\sigma/R_{av} \sim \sqrt{\frac{\langle |u_{00}|^2 \rangle}{4\pi}}}{\epsilon \text{ (axis ratio)}} = \frac{R(0)}{R(\pi/2)} = \frac{1 + u_{00}/2\sqrt{\pi} + 10\sqrt{5/\pi}u_{20}/4}{1 + u_{00}/2\sqrt{\pi} - 5\sqrt{5/\pi}u_{20}/4}$$

Safran, J. Chem. Phys. 78, 2073 (1983)

RESULTS & DISCUSSION Determination of the bending constant

$$\langle |u_{00}|^2 \rangle = \frac{k_B T}{12k \ 2 \ 8(R/R_0)(k+k'/2) + 6k 2}$$

$$\langle |u_{20}|^2 \rangle = \frac{k_B T}{16(R/R_0)(k+k'/2) \ ? \ 12k?}$$

Safran, Phys. Rev. A 43, 2903 (1991)

where

k : bending elastic constant

k': Gaussian bending elastic constant

of the film

 R_0 : droplet radius at the emulsification boundary

σ/R_{av}	ϵ	$\langle u_{00} ^2 \rangle$	$\langle u_{20} ^2 \rangle$	$\kappa (k_b T)$	$\bar{\kappa} (k_b T)$	System
0.157*	1.56*	0.310	0.0133	3.4±0.2	-5.9±0.4	Present measurements
0.156*	1.72*	0.306	0.0201	2.35 ± 0.1	-3.8 ± 0.2	AOT/D ₂ O/decane
						AOT/D ₂ O/iso-octane
0.22*	1.47	0.61	0.011*	3.9	-7.2	AOT/D ₂ O/decane
				(3.8)	(-7.5)	[14]
0.17	2.5	0.34	0.062	0.92*	-0.38*	$C_{10}E_5/D_2O/octane$
(0.20)						[57]
0.17	2.2	0.29	0.043	1.25*	-0.80*	$C_{10}E_5/D_2O/n$ -dodecane
(0.15)						[15]

¹⁴Arleth and Pedersen, *Phys. Rev. E* **63**, 61406 (2001), ⁵⁷Safran and cowokers, *Phys. Rev. Lett.* **65**, 3348 (1990) ¹⁵Hellweg and Lagevin, *Phys. Rev. E* **57**, 6825 (1998)