Journal club

2D assemblies of ionic liquid crystals based on imidazolium moieties: formation of ion-conductive layers

J. Sakuda, M. Yohio, T. Ichikawa, H. Ohno, T. Kato, New J. Chem. 2015, 39, 4471-4477

Yoonnam Jeon (2015. 11. 20)

RELATED WORK Molecular designed crystal with self-assembly of IL

Immigration from aggregations to the seed crystals

Faced imidazolium rings to reduce the interface between hydrophilic IL rings and hydrophobic alkane solvent

Kang, Kim, Jeon*, J. Phys. Chem. C 117, 14332 (2013)

INTRODUCTION

Nanostructured liquid crystals

- ion and charge transport
- separation membranes
- catalysis

Ionic liquids (electrolyte materials)

- negligible vapor pressure
- flame retardancy
- high ionic conductivity

Ionic liquid based liquid crystals

formation of ion-conductive pathways

Chem. Mater. 26, 6496 (2014)

INTRODUCTION

Aim of the present study

 Constructing highly mobile ion-conductive pathways using the self-assembly of ionic liquid crystals and ionic liquids

How? Interaction design

Diol-based LC + ILs

 $\sim \sim N \oplus N \sim$

restriction: only for ILs with Br

2a: X = Br 2b: X = BF4

J. Am. Chem. Soc. 130, 1759 (2008)

Present design

Segregation of the ionic and nonionic moieties of ionic LCs and ILs

RESULTS & DISCUSSION Molecular design

 $1(X): X = BF_4, CF_3SO_3, (CF_3SO_2)_2N$

for the formation of LC layered structures

due to high ionic conductivity

$$2(X)$$
: X = BF₄, CF₃SO₃, (CF₃SO₂)₂N

T_{Iso→SmA} is high for small counter anion radii

stronger electrostatic interaction

Table 1 Thermal properties of compounds 1(X)

x	Radius of X ^{- a} (Å)	Phase transition behavior ^{b,c}				
BF ₄			250^{d}	SmA	35 ^e (10)	Cr
CF_3SO_3	2.70	Iso	148 (1.1)			Cr
$(CF_3SO_2)_2N$	3.24	Iso	64 (1.6)	SmA		

by DSC cooling process (10K/min)

RESULTS & DISCUSSION Liquid—crystalline properties

RESULTS & DISCUSSION Formation of layered structure

RESULTS & DISCUSSION Formation of layered structure

Increasing 2(CF₃SO₃) concentration: increasing layer spacing

IL: organized into ion-conductive layers formed by the imidazolium moiety in 1(CF₃SO₃)

electrodes: comb-shaped gold electrodes deposited on a glass substrate

(Relation between conductivity & phase transition: not discussed)

Homeotropically aligned monodomain is spontaneously formed

Measurement of conductivities parallel to the ion-conductive pathways

Increasing 2(CF₃SO₃)
concentration (increasing layer spacing)

V

Increasing conductivity

Non-covalent systems based on diol LC molecules with the same mesogenic moiety as 1(CF₃SO₃) with LC:IL = 8:2

$$\sigma = 4.8 \times 10^{-4} \text{ S/cm}$$

at T = 122°C

Mol. Crys. Liq. Cryst. 413, 2235 (2004)

$$\sigma \neq 2.0 \text{ x } 10^{-3} \text{ S/cm at T} = 122^{\circ}\text{C}$$

one order of magnitude higher

 $\% \sigma = 2.0 \times 10^{-2} \text{ S/cm at T} \sim 100^{\circ}\text{C}$

RESULTS & DISCUSSION Ion—conductivities with Li salts

Addition of LiCF₃SO₃

Decrease in the conductivity

from the formation of aggregated species through the coordination of the anion to the lithium cations

J. Phys. Chem. B 112, 2991 (2008)

RESULTS & DISCUSSION For different counter anions

cooling process

LC states over the entire composition range

1(CF₃SO₃) has high compatibility with 2(X)

RESULTS & DISCUSSION For different counter anions

cooling process

- 2(X) > 30%: 1(CF₃SO₃) does not crystallize on cooling to -30°C (except 1(CF₃SO₃) + 2(CF₃SO₃))
- $T_{Iso \to SmA}$ decreases with an increasing radius of 2(X)

Addition of 2(X) with larger counter anions: destabilizes the LC phase