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Near-field focusing and magnification through
self-assembled nanoscale spherical lenses

Ju Young Lee'*, Byung Hee Hong"**, Woo Youn Kim', Seung Kyu Min', Yukyung Kim', Mikhail V. Jouravlev',
Ranojoy Bose”, Keun Soo Kim~, In-Chul Hwang', Laura J. Kaufman®, Chee Wei Wong”, Philip Kim” & Kwang S. Kim'

Nanolenses beat the barrier

The performance of a light microscope is intrinsically constrained by the Abbe diffraction
limit. — = Zf - Lee et al. are working on a new way of beating the limit, using nanoscale
spherical lenses that self-assemble by bottom-up integration of cup-shaped organic
molecules called calixarenes. Lenses produced in this way have very short focal lengths
that can generate near-field magnification beyond the diffraction limit, enabling the
resolution of features of the order of 200 nm. The lenses can be placed at will on a surface
and, among other things, can be used to reduce the size of deep-ultraviolet lithoaraphy
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Diffraction Limit

Airy Disk Separation and the Rayleigh Criterion
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Beyond the Diffraction Limit
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Nanolens from the CHQ(calix-4-hydroquinone) molecules
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Figure 1| CHQ plano-spherical convex lenses. a, SEM images of growing
CHQ nanospheres and their intermediate structures. b, Schematic diagrams
and SEM images showing the self-assembly of CHQ lenses (see text for
details). ¢, SEM image showing various sizes of CHQ lenses separated as an
aqueous suspension and drop-dried on a substrate. d, AFM profile showing
the near perfect spherical face of the lens. Inset, corresponding SEM image.
e, Optical microscope image of CHQ lenses on a CHQ nanotube crystal,
showing the magnification by the lens. The line spacing () behind the lens is
considerably increased (I').

Thickness & Diameter can be controlled by Time and Temperature
Thickness H < 300 nm Diameter D = 0.05-3 ym

F=HM/(M -1) ~590nm Measured Focal Length

M : Magnification Factor

F=(n-D)@/R -1/R;)~13um  Focal Length by

Geometrical Optics



Beyond the diffraction limit
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Pin-cushion distortion

Figure S7 Reflection mode optical microscope images of a nanolens showing the magnified
images of underlying objects (250 nm pitch stripe patterns). corresponding to the SEM image in
Fig. 2b. The numbers indicate the relative distance (in um) from the top of the lens. Lens
dimension: D=~2.7 um. H=~0.8um (scale bars. 2um). a 30
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image formation. e, Beam trajectory with reduced focal length in the near-
field PSClens. Small insets on the left, AFM images of the CHQ lens (upper)
and the PMMA disk (lower). Large insets on the left, FDTD simulation
results of the radial component of the electric field (E,) of the PSC lens
(upper) and the PMMA disk (lower) (4= 472nm). All scale bars, 2 um.



Magnification Effect
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B1. Comparison between ray-tracing and FDTD simulation for a nanolens

Figure S5 a, A Ray-tracing simulation result of the lens calculated by OSLO program packages
(Sinclair Optics, Inc.). b, A finite-difference time-domam (FDTD) simulation result (E,) obtamned
by FullWAVE 4.0 program (RSoft Design Group). D = 800nm, H = 280 nm and 2=365 nm.
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Figure 4| Focal length changes for various sizes of CHQ lenses (fixed H/D=0.35). a, = 0.8 pm; b, D = 2 um; ¢, D)= 4 pm. Data were obtained from
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FDTD simulation results of | E_,r|3 (A=472nm).



Focusing Behavior
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Applications
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