Unveiling Microscopic Structures of Charged Water Interfaces by Surface-Specific Vibrational Spectroscopy

Yu-Chieh Wen,¹,²,³ Shuai Zha,¹ Xing Liu,⁴,⁵ Shanshan Yang,¹ Pan Guo,⁴,⁵ Guosheng Shi,⁴ Haiping Fang,⁴ Y. Ron Shen,¹,²,* and Chuanshan Tian¹,⁶,‡

¹Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro- and Nano-Photonic Structures (MOE), Fudan University, Shanghai 200433, People’s Republic of China
²Department of Physics, University of California, Berkeley, California 94720, USA
³Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, Republic of China
⁴Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
⁵University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
⁶Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, People’s Republic of China

(Received 26 September 2015; published 5 January 2016)

A sum-frequency spectroscopy scheme is developed that allows the measurement of vibrational spectra of the interfacial molecular structure of charged water interfaces. The application of this scheme to a prototype lipid-aqueous interface as a demonstration reveals an interfacial hydrogen-bonding water layer structure that responds sensitively to the charge state of the lipid headgroup and its interaction with specific ions. This novel technique provides unique opportunities to search for better understanding of electrochemistry and biological aqueous interfaces at a deeper molecular level.

DOI: 10.1103/PhysRevLett.116.016101
System - Charges on air/water interface

Lignoceric acid (C$_{23}$H$_{47}$COOH)
Langmuir monolayer

Salts (NaCl), acids (HCl), and bases (NaOH)

Low pH ↔ High pH
Interfacial structure model: BIL and DL

Water molecules strongly interacting with charged headgroups and counter cations.

Water molecules reoriented by surface electric field.

\[\chi_{S,\text{eff}}^{(2)} = \chi_S^{(2)} + \int_0^\infty \left[\chi_B^{(2)} + \chi_B^{(3)} \cdot \tilde{\zeta} E_0(z') \right] e^{i\Delta k z' \zeta} dz' \]

\[\chi_S^{(2)} : \text{Second-order susceptibility of bonded interface layer} \]

\[\chi_B^{(2)} : \text{Second-order electric quadrupole bulk susceptibility} \]

\[\chi_B^{(3)} : \text{Third-order bulk susceptibility} \]

\[\Delta k_z : \text{Phase mismatch in reflection geometry (} \Delta k_z = k_{SF,z} - k_{\text{vis},z} - k_{\text{ir},z} \text{)} \]
Second order susceptibilities from BIL and DL

\[\chi^{(2)}_{S,\text{eff}} = \chi^{(2)}_S + \int_{0^+}^\infty \chi^{(2)}_B + \chi^{(3)}_B \cdot \hat{z} E_0(z') e^{i \Delta k_z z'} dz' \] \hspace{1cm} (1)

- \(\chi^{(2)}_S \): Second-order susceptibility of bonded interface layer
- \(\chi^{(2)}_B \): Second-order electric quadrupole bulk susceptibility
- \(\chi^{(3)}_B \): Third-order bulk susceptibility
- \(\Delta k_z \): Phase mismatch in reflection geometry (\(\Delta k_z = k_{SF,z} - k_{VIS,z} - k_{IR,z} \))

\[\chi^{(2)}_{S,\text{eff}} = \chi^{(2)}_S + \chi^{(2)}_{S,DL}, \]

\[\chi^{(2)}_{S,DL} \equiv \int_{0^+}^\infty \chi^{(3)}_B \cdot \hat{z} E_0(z') e^{i \Delta k_z z'} dz' \equiv \chi^{(3)}_B \cdot \hat{z} \Psi, \]

with \(\Psi \equiv \int_{0^+}^\infty E_0(z') e^{i \Delta k_z z'} dz' \). \hspace{1cm} (2)
Experimental Setup - Same as HD-SFVS in Tahara group

\[
\begin{align*}
|E_{\text{sample}} + E_{\text{LO}}e^{i\Delta \phi}|^2 &= |E_{\text{sample}}|^2 + |E_{\text{LO}}|^2 + E_{\text{LO}} E_{\text{sample}}^* e^{+i\Delta \phi} + E_{\text{LO}}^* E_{\text{sample}} e^{-i\Delta \phi} \\
\text{F.T.} & \quad I(t) = \int I(\omega)e^{-i\omega t} d\omega = \int \left| E_{\text{ref}}(\omega) \right|^2 + \left| E_{\text{LO}}(\omega) \right|^2 e^{-i\omega t} d\omega \\
\text{where, } \Delta \phi &= \frac{2\pi}{\lambda}(n_{FS} - 1)d \\
\text{*Pulse duration of Ti:Sa Amplifier } &\sim 100 \text{ fs}
\end{align*}
\]
Strategy - How to deduced $\chi^{(2)}_{s,DL}$ from $\chi^{(2)}_{\text{eff}}$

1) Take SF spectra of the LA monolayer/water interface in the pH range far below the half ionization point of carboxyl headgroup (pH < 9)

$\chi_s^{(2)} \sim \chi_{s,0}^{(2)}$: Second-order susceptibility of charge neutral interface

$$\chi_{s,\text{eff}}^{(2)} = \chi_s^{(2)} + \int_{0+}^{\infty} \chi_B^{(2)} + \chi_B^{(3)} \hat{z}E_0(z') e^{i\Delta k z'} dz'$$, \hspace{1cm} (1)

$\chi_s^{(2)} \sim \chi_{s,0}^{(2)}$ at pH < 2.5
Strategy - How to deduced $\chi^{(2)}_{S,DL}$ from $\chi^{(2)}_{eff}$

*Assignment of the OH band

(1) From OH stretch mode of -COOH headgroup (H-bonded)

(2) From OH stretch mode of water molecules Bound to headgroup
Strategy - How to deduced $\chi_{S,DL}^{(2)}$ from $\chi_{eff}^{(2)}$

(2) Take SF spectra of the COOH (COO-) stretch modes of the LA monolayer/water interface.

![Graphs showing wave numbers and spectra](image)

- (1) 1410 cm\(^{-1}\)
- (2) 1434 cm\(^{-1}\)
- (3) 1717 cm\(^{-1}\)
Strategy - How to deduced $\chi^{(2)}_{S,DL}$ from $\chi^{(2)}_{eff}$

(3) Calculate surface charge density from the fitting result of the low frequency spectra (for the case of pH > 9)

$$X_{COOH} + X_{COO^-} + X_{COO^-\cdot Na^+} = 1$$

*From MD simulation → one Na$^+$ cation prefer to bind to three COO$^-$ headgroups

$$\sigma = N_s (1 - X_{COOH}) - (1/3) \cdot N_s X_{COO^-\cdot Na^+}$$

σ: Net surface charge density

N_s: Surface number density of carboxyl headgroup ($N_s \sim \frac{1}{20 A^2}$)
Strategy - How to deduced $\chi^{(2)}_{S,DL}$ from $\chi^{(2)}_{eff}$

(4) Calculate depth-dependent electric field, $E_0(z)$ from PB theory (for the case of pH > 9)

< Gouy-Chapman model >

(PB theory)

$$\nabla^2 \psi = -\frac{\rho_+(z) + \rho_-(z)}{\varepsilon_r \varepsilon_o} = -\left(\frac{c_0 e^+}{\varepsilon_r \varepsilon_o} \frac{(e^+\psi(z))}{kT} + \frac{c_0 e^-}{\varepsilon_r \varepsilon_o} \frac{(-e)\psi(z)}{kT}\right)$$

$$\approx \frac{2c_0 e^2}{\varepsilon_r \varepsilon_o kT} \psi(z) \text{ for } \frac{e\psi(z)}{kT} \ll 1$$

$$\psi(z) = \psi_o e^{-\kappa z}, \kappa = \sqrt{\frac{2c_0 e^2}{\varepsilon_r \varepsilon_o kT}}$$

$$\frac{e\psi(z)}{kT} \geq 1 \text{ for highly charged surface (}\psi(0) > 100 \text{ mV})$$
Strategy - How to deduced $\chi^{(2)}_{S,DL}$ from $\chi^{(2)}_{eff}$

*Explicit solution of PB equation for 1:1 electrolyte solution surface

$$\frac{d^2 y}{dz^2} = \frac{c_0 e^2}{\varepsilon_r \varepsilon_0 k_B T} (e^y - e^{-y}) = \frac{2c_0 e^2}{\varepsilon_r \varepsilon_0 k_B T} \sinh y = \kappa^2 \sinh y \cdots (1)^*$$

where, $y=\frac{e \psi(z)}{k_B T}$, and $\kappa = \sqrt{\frac{2c_0 e^2}{\varepsilon_r \varepsilon_0 k_B T}}$

$$2 \frac{dy}{dz} \frac{d^2 y}{dz^2} = 2 \frac{dy}{dz} \cdot \kappa^2 \sinh y \cdots (2)^*$$

$$\int \frac{d}{dz} \left(\frac{dy}{dz} \right)^2 dz' = \left(\frac{dy}{dz} \right)^2 = 2\kappa^2 \int \frac{dy}{dz} \cdot \sinh y dz' = 2\kappa^2 \int \sinh y dy' = 2\kappa^2 \cosh y + C_1 \cdots (3)^*$$

$C_1 = -2\kappa^2$

From M.S. dissertation of W. M. Sung
Strategy - How to deduced $\chi^{(2)}_{S,DL}$ from $\chi^{(2)}_{eff}$

$$\frac{dy}{dz} = \pm \kappa \sqrt{2 \cosh y - 2} = \pm 2 \kappa \sinh \left(\frac{y}{2}\right) \cdots (4)^*$$

+ for negatively charged surface
- for positively charged surface

$$\int \frac{1}{\sinh \frac{y}{2}} dy' = 2 \kappa \int dz' \Rightarrow 2 \ln(\tanh \frac{y}{4}) = 2 \kappa z + 2 C_2 \cdots (5)^*$$

$$C_2 = \ln \left(\frac{e^{y_0/2} - 1}{e^{y_0/2} + 1} \right), y_0 = \frac{e^{\psi(0)}}{k_B T}$$

From M.S. dissertation of W. M. Sung
Strategy - How to deduced $\chi^{(2)}_{S,DL}$ from $\chi^{(2)}_{eff}$

$$\ln\left(\frac{e^{y/4} - e^{-y/4}}{e^{y/4} + e^{-y/4}}\right) = \ln\left(\frac{e^{y/2} - 1}{e^{y/2} + 1}\right) = -\kappa z + C_2 \cdots (6)^*$$

$$C_2 = \ln\left(\frac{e^{y_0/2} - 1}{e^{y_0/2} + 1}\right), \quad y_0 = \frac{e\psi(0)}{k_B T}$$

From M.S. dissertation of W. M. Sung

$$\phi(z) = \frac{4k_B T}{e} \tanh^{-1}\left\{\tanh\left(\frac{e\phi_0}{4kT}\right) \exp\left(-\kappa z\right)\right\}, \quad (S3)$$

$$\kappa = \left(\frac{2Ce^2}{\varepsilon kT}\right)^{1/2}, \quad (S4)$$
Strategy - How to deduced $\chi^{(2)}_{S,DL}$ from $\chi^{(2)}_{eff}$

*Grahame equation for charge neutrality

$$\sigma = -\varepsilon_0 \varepsilon_r \int_0^\infty \rho_e dz = -\varepsilon_0 \varepsilon_r \left. \frac{d\psi}{dz} \right|_{z=0} \quad \cdots (7)$$

$$\sigma = \sqrt{8C_0 \varepsilon_0 \varepsilon_r k_B T} \cdot \sinh\left(\frac{e\psi_0}{2k_B T}\right) \cdots (8)$$

From M.S. dissertation of W. M. Sung

$$\phi_0 = -\frac{2kT}{e} \sinh^{-1}\left\{ \frac{e\sigma}{(8k_B T \varepsilon C)^{1/2}} \right\}, \quad (S5)$$

Once surface charge density, σ and bulk concentration, C are determined, depth profile of surface electric field is uniquely determined by PB equation (pH > 9)
Strategy - How to deduced $\chi^{(2)}_{S,DL}$ from $\chi^{(2)}_{eff}$

At neutral and acidic pH (pH <9)

At neutral and acidic pH (pH <9), the COO$^-$ and COO$^-$Na$^+$ modes cannot be measured accurately...
Strategy - How to deduced $\chi^{(2)}_{S,DL}$ from $\chi^{(2)}_{eff}$

By introducing surface pH, pH_s

\[
pK_a = pH_s - \log\left(\frac{1 - X_{COOH}}{X_{COOH}}\right)
\]

\[
pH_s = pH_b + \frac{e\phi_0}{2.3k_BT}, \quad (S1)
\]

\[
[H^+]_s(0) = [H^+]_b e^{-\frac{e\psi(0)}{k_BT}}
\]

\[
-\log_{10}([H^+]_s(0)) = -\log_{10}([H^+]_b) - \log_{10}(e^{-\frac{e\psi(0)}{k_BT}})
\]

\[
\sigma = \sqrt{8C_0\varepsilon_0\varepsilon_r k_BT \cdot \sinh\left(\frac{e\psi(0)}{2k_BT}\right)} \quad \cdots (8)
\]
Strategy - How to deduced $\chi^{(2)}_{S,DL}$ from $\chi^{(2)}_{eff}$

$\chi^{(2)}_{S} \sim \chi^{(2)}_{S,0}$: Second-order susceptibility of charge neutral interface

Converge to $\chi^{(2)}_{S,0}$ when deprotonation fraction of COOH is low.

$$\chi^{(2)}_{S,eff} = \chi^{(2)}_{S} + \int_{0^+}^{\infty} \chi^{(2)}_{B} + \chi^{(3)}_{B} \psi_{B} E_{0}(z') e^{i\Delta k z'} dz' ,$$

(1)

\begin{align*}
\text{(a)} & \quad \text{Re} \\
\text{(b)} & \quad \text{Im}
\end{align*}
Deduced $\chi^{(2)}_{S,DL}$ spectra

(a) Re

(b) Im

Wave Number (cm$^{-1}$)

$\chi^{(2)}_{S,DL} \text{ (10}^{-21} \text{ m}^2 \text{ V}^{-1})$

$\chi^{(3)}_B \text{ (10}^{-20} \text{ m}^2 \text{ V}^{-2})$
Deduced $\chi^{(2)}_s$ spectra
\(\chi^{(3)}_B \) does not sensitively depend on interface property
In summary,

We have demonstrated a scheme using PS-SFVS to separately deduce the vibrational spectra of the BIL and the diffuse layer of a charged water interface. For any water interface with a given surface charge density σ, it is now possible to find the spectrum of the diffuse layer and, in turn, the spectrum of the BIL from measurement. Even if σ is not known, one can still carry out a measurement with several different phase mismatches Δk_z, and deduce both σ and the spectrum of the BIL, which are intimately related to the microscopic structure of BIL. Such work offers new opportunities to explore various charged water interfaces at a deeper molecular level, providing a base for the understanding and theoretical modeling of such interfaces.