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A sum-frequency spectroscopy scheme is developed that allows the measurement of vibrational spectra
of the interfacial molecular structure of charged water interfaces. The application of this scheme to a
prototype lipid-aqueous interface as a demonstration reveals an interfacial hydrogen-bonding water layer
structure that responds sensitively to the charge state of the lipid headgroup and its interaction with specific
ions. This novel technique provides unique opportunities to search for better understanding of
electrochemistry and biological aqueous interfaces at a deeper molecular level.
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System - Charges on air/water interface
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Interfacial structure model: BIL and DL
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Second order susceptibilities from BIL and DL
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Experimental Setup - Same as HD-SFVS in Tahara group

Visible beam
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Strategy - How to deduced 3@ p, from @
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Strategy - How to deduced 3@ p, from @

*Assignment of the OH band
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Strategy - How to deduced 3@ p, from @

(2) Take SF spectra of the COOH (COQO-) stretch modes of the LA
monolayer/water interface.
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Strategy - How to deduced 3@ p, from @

(3) Calculate surface charge density from the fitting result of the low
frequency spectra (for the case of pH >9)
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Strategy - How to deduced x®s p, from x @

(4) Calculate depth-dependent electric field, E,(z) from PB theory
(for the case of pH > 9)

< Gouy-Chapman model > (PB theory)
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Strategy - How to deduced x®s p, from @,

*Explicit solution of PB equation for 1:1 electrolyte solution surface
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Strategy - How to deduced x®s p, from @,
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Strategy - How to deduced x®s p, from @,
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Strategy - How to deduced x®s p, from @,

*Grahame equation for charge neutrality
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Once surface charge density, o and bulk concentration,
C are determined, depth profile of surface electric field
is uniquely determined by PB equation (pH > 9)




Strategy - How to deduced x®s p, from @,

At neutral and acidic pH (pH <9)
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Strategy - How to deduced 3@ p, from @

By introducing surface pH, pH
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Strategy - How to deduced x®s p, from x @

» & ;(ézg Second-order susceptibility of charge neutral interface
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Deduced ¢®s p, spectra
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Deduced y®s spectra
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g does not sensitively depend on interface property
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In summary,

We have demonstrated a scheme using PS-SFVS to separately deduce the

vibrational spectra of the BIL and the diffuse layer of a charged water interface.

For any water interface with a given surface charge density o, it is now possible to
find the spectrum of the diffuse layer and, in turn, the spectrum of the BIL from
measurement. Even if ¢ is not known, one can still carry out a measurement with

several different phase mismatches Ak,, and deduce both o and the spectrum of
the BIL, which are intimately related to the microscopic structure of BIL. Such work
offers new opportunities to explore various charged water interfaces at a deeper
molecular level, providing a base for the understanding and theoretical modeling of

such interfaces.



