Aqueous solutions of Ionic Liquids

- Imidazolium cation & halide anion

- Studied by NMR Spectroscopy

2012.8.11 Seoncheol Cha

What is ionic liquids?

Materials exist at liquid state at room-temperature even though having ionic bonding

Low vapor pressure

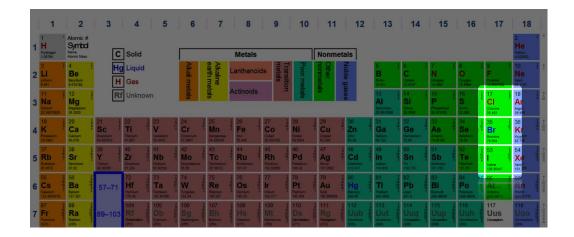
Low combustibility

Excellent thermal stability

Wide liquid region

Good solvent for polar/non-polar compounds

Green solvent for alternating organic solvent

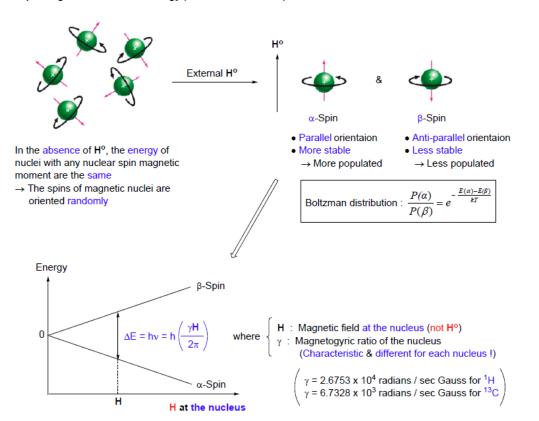

Special solvent to synthesis unique chemical

Recycling material


Solar thermal energy transfer/storage medium

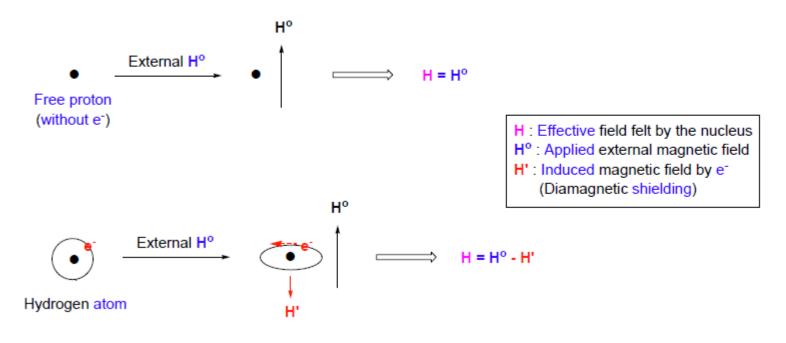
Battery electrolyte

[bmim][X] ionic liquid (X : Cl, Br, I)



1-Butyl-3-methylimidazolium iodide ,CH₃

NMR Spectroscopy



Nuclear Spin Magnetic Moment vs. Energy (In the case of s = 1/2)

Lecutre Note Prof. Lee in Chemistry

Chemical Shift

Shielding / Deshielding

Lecutre Note Prof. Lee in Chemistry

- Fixed ν & vairable H^o: e⁻ Density around proton ↑

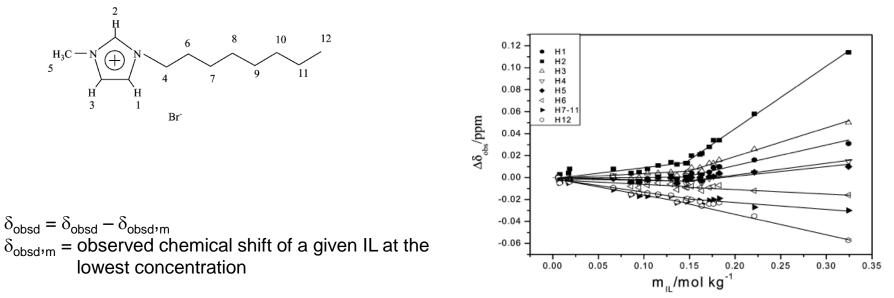
 → Shielding ↑
 → Induced magnetic field (H') ↑
 → H^o for matching ΔE = hν (fixed value !) ↑
 → Upfield
- Fixed H^o & vairable v (Modern Instrument) : e⁻ Density around proton ↑
 → Shielding ↑
 → Induced magnetic field (H') ↑
 → H ↓
 → v ↓

Lecutre Note Prof. Lee in Chemistry

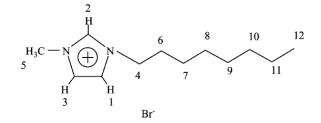
Context

2003 The structure of a Room-Temperature Ionic Liquid with and without trace amount of water : The role of C-H...O and C-H...F Interactions in $[C_n mim[BF_4]]$

- NOE / ROE NMR Spectroscopy for [C_nmim][BF₄]

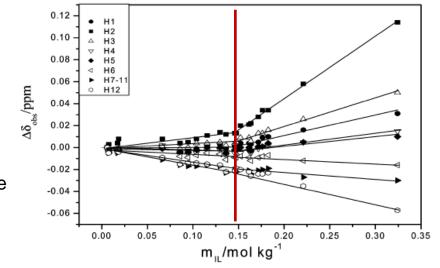

- type of water-cation interaction / site of interaction Andrea Mele, Chieu D. Tran, Silvia H. De Paoli Lacerda Angew. Chem. Int. Ed (2003) **42** 4364

2008 Aggregation of Ionic Liquids [C_nmim]Br (n=4,6,8,10,12) in D₂O : A NMR Study

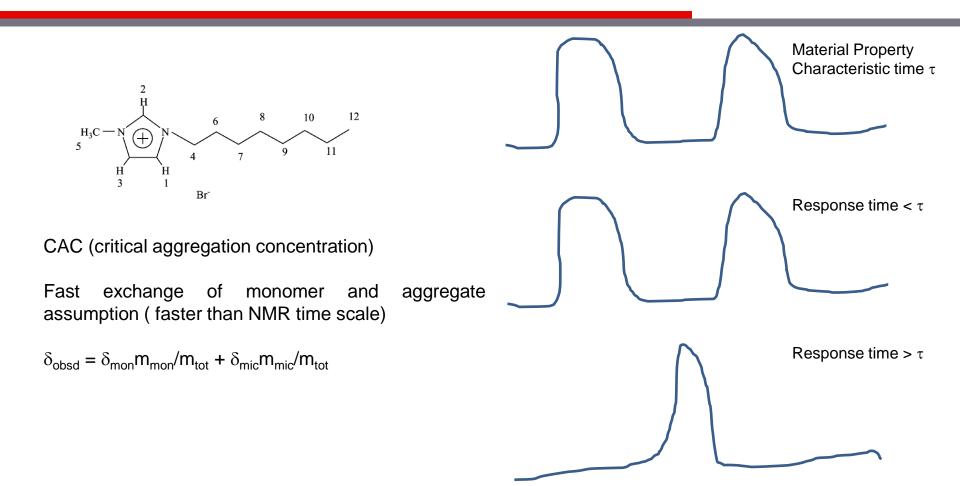

- 1H NMR, 1H-1H ROESY NMR

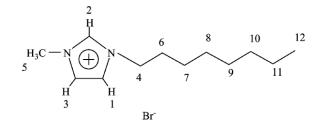
- aggregation in aqueous solution of ionic liquid Yang Zhao, Shanjiao Gao, Janji Whang, Junming Tang J.Phys.Chem.B (2008) **112** 2031

2008 Aggregation of Ionic Liquids [Cnmim]Br (n=4,6,8,10,12) in D2O : A NMR Study


Dependence of proton chemical shifts of [C8mim]Br on the IL concentration in D2O.

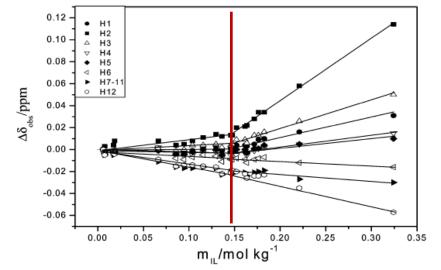
CAC (critical aggregation concentration)


Fast exchange of monomer and aggregate assumption (faster than NMR time scale)


$$\delta_{obsd} = \delta_{mon} m_{mon} / m_{tot} + \delta_{mic} m_{mic} / m_{tot}$$

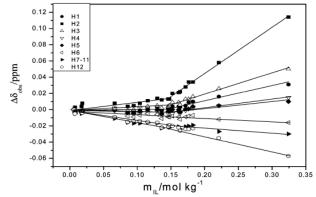
Dependence of proton chemical shifts of [C8mim]Br on the IL concentration in D2O.

2008 Aggregation of Ionic Liquids [Cnmim]Br (n=4,6,8,10,12) in D2O : A NMR Study


CAC (critical aggregation concentration)

Fast exchange of monomer and aggregate assumption (faster than NMR time scale)

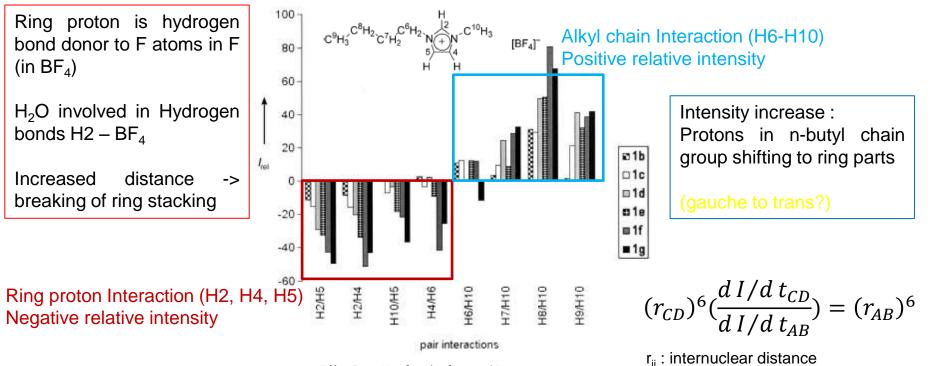
$$\delta_{obsd} = \delta_{mon} m_{mon} / m_{tot} + \delta_{mic} m_{mic} / m_{tot}$$


No aggregation assumption below CAC

 $\delta_{obsd} = \delta_{mic} - CAC(\delta_{mic}\text{-}\delta_{mon})/m_{tot}$

Dependence of proton chemical shifts of [C8mim]Br on the IL concentration in D2O.

2008 Aggregation of Ionic Liquids [Cnmim]Br (n=4,6,8,10,12) in D2O : A NMR Study


Dependence of proton chemical shifts of [C8mim]Br on the IL concentration in D2O.

CAC1 $\delta_{obsd} = \delta_{mon} m_{mon} / m_{tot} + \delta_{mic} m_{mic} / m_{tot}$

 $\begin{array}{l} \mathsf{CAC2} \\ \delta_{\mathsf{obsd}} = \delta_{\mathsf{mic}} - \mathsf{CAC}(\delta_{\mathsf{mic}}\text{-}\delta_{\mathsf{mon}})/\mathsf{m}_{\mathsf{tot}} \end{array}$

Ref1 : Goodchild *et al* (2007) Ref2 : Wang *et al* (2007)

No aggregate for	IL	CAC1 (mol / kg)	CAC2 (mol / kg)	Surface tenstion (mol/ L) Ref1	Electric conductivity (mol / L) ref1	Electric conductivity (mol / L) ref2
short chain	[C ₄ mim][Br]	-	2.579	0.8±0.1	0.7±0.3	0.97
Difference between H ₂ O and D ₂ O (??)	[C ₆ mim][Br]	0.732	0.849	0.6±0.2	0.4±0.3	0.77
	[C ₈ mim][Br]	0.142	0.140	0.15±0.05	0.15±0.06	0.16
	[C ₁₀ mim][Br]	0.030	0.032	0.04±0.02	0.03±0.01	0.039
	[C ₁₂ mim][Br]	0.011	0.011			0.009

1c 1d

0.20 0.37

0.17 0.27

0.56 0.81

0.36 0.45 0.52

0.10

0.09

Table 1: Composition of samples of compound 1.

1a^[a] 1b

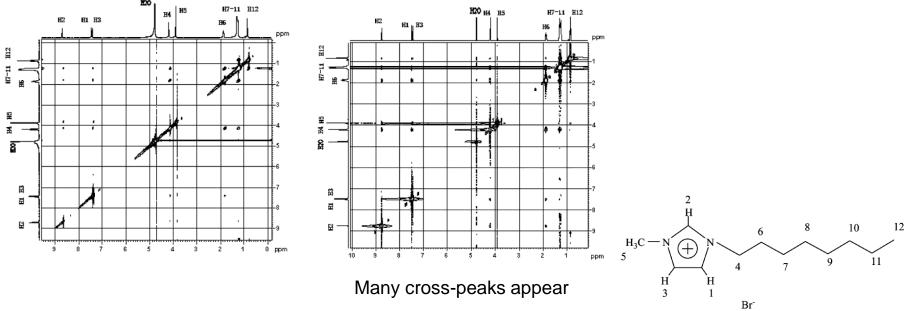
0

Water: 1 mole ratio

Water mole fraction

[a] Pure liquid, reference sample.

<u>le lf lg</u> dl/dt_{ij} : in

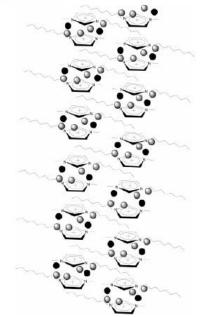

1.09

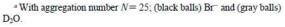
dl/dt_{ij} : intensity of cross-peaks

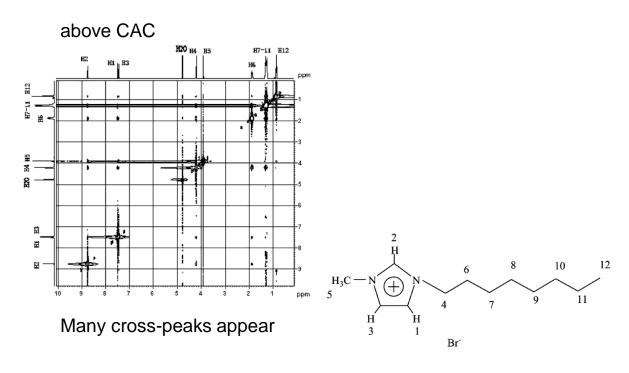
Andrea Mele et al., Angew. Chem. Int. Ed.

[BMIM][Br] Rosey

below CAC


H2-H1,H3 | H5-H4,H6 : intermolecular interaction


H12/H1-H5


: ring-alkyl chain contact (intramolecular)

[BMIM][Br] Rosey

SCHEME 2: Possible Structure Illustrating Aggregation of [C₈mim]Br in D₂O^a

H2-H1,H3 | H5-H4,H6 : intermolecular interaction

H12/H1-H5

: ring-alkyl chain contact (intramolecular)