Development of a two-color picosecond OPO, pumped by a Nd:YAG laser mode locked using a nonlinear mirror, for DR-SFG spectroscopy

A.A. Mani, L. Dreesen, C. Humbert, P. Hollander, Y. Caudano, P.A. Thiry, A. Peremans Laboratoire de Spectroscopie Moleculaire de Surface, Belgium Surface Science 502–503 (2002) 261–267

Abstract

We set up a doubly-resonant sum frequency generation (DR-SFG) spectrometer based on the use of an all-solidstate flash-lamp-pumped Nd:YAG laser that synchronously pumps two parametric oscillators. Pulses as short as 12 ps FWHM are generated by mode locking a Nd:YAG oscillator using a frequency doubling nonlinear mirror combined with a two-photon absorber. The available pump power is shared between a LiNbO₃/AgGaS₂ optical parametric oscillator (OPO), tunable from 3800 to 1100 cm⁻¹ and a BBO OPO tunable from 410 to 2600 nm. Spectral resolution and pulse are 2 and 3 cm⁻¹ in the infrared and visible spectral ranges, respectively. First DR-SFG spectra of self-assembled monolayers on Au are presented. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Laser methods; Non-linear optical methods; Sum frequency generation

Introduction

- DR-SFG can detect possible electron transitions in the visible spectral region and possible interferences between substrate and adsorbed layer.
- DR-SFG spectroscopy requires tunable laser beams with short light pulses in the IR region and in the visible.
- OPO is used for generating frequency tunable laser beams delivering short pulses.
- Achieved a new passive mode-locking technique based on a FDNLM combined with passive-negative feedback.
- The merits of the setup: photochemical stability, short response time (12.5 ps), applicability to a wide spectral range, simplicity and self-starting mode locking .

The two-color tunable laser system

All-solid-state flash-lamp-pumped Nd:YAG laser

Nd:YAG oscillator configuration: AOML = acousto-optic mode locker; M = high reflectivity curved mirror (R = -10 m); DM = dichroic mirror; T = telescope; D = diaphragm.

A typical envelope of the YAG oscillator pulse train, recorded on a 50 MHz oscilloscope

The Fourier-transform limited pulse duration: the balance between the pulse shortening mechanism by the FDNLM and the stretching mechanism introduced by the saturated semiconductor.

Picosecond laser optical oscillator stage

Double-pass optical amplifier stage

Optical parametric oscillator

LINbO₂/AgGaS₂ OPO in the IR range

IR 2.6 to 9 μm

Tunability

LiNbO $_3$ permits wavelength tuning in 2.5 - 3.6 μ m AgGaS $_2$ permits wavelength tuning in 4 to 9 μ m

OPO in the visible spectral range

- **1**. Two-color laser system based on an all-solid state pulsed Nd:YAG laser pumping picosecond OPOs.
- 2. The system is integrated in a DR-SFG spectrometer dedicated to the infrared-visible range.
- 3. The presented set-up offers the advantages of high sensitivity, high resolution, and maintenance free operation due to the use of an all-solid-state technique.