Extreme Bendability of DNA Less than 100 Base Pairs Long Revealed by Single-Molecule Cyclization

Reza Vafabakhsh¹ and Taekjip Ha^{1,2}*

The classical view of DNA posits that DNA must be stiff below the persistence length [<150 base pairs (bp)], but recent studies addressing this have yielded contradictory results. We developed a fluorescence-based, protein-free assay for studying the cyclization of single DNA molecules in real time. The assay samples the equilibrium population of a sharply bent, transient species that is entirely suppressed in single-molecule mechanical measurements and is biologically more relevant than the annealed species sampled in the traditional ligase-based assay. The looping rate has a weak length dependence between 67 and 106 bp that cannot be described by the worm-like chain model. Many biologically important protein-DNA interactions that involve looping and bending of DNA below 100 bp likely use this intrinsic bendability of DNA.

problem

Persistence length

basic mechanical property quantifying the stiffness of a polymer.

Persistence length of DNA = 50nm, 150bp

$$<\cos\theta>=e^{-s/l_p}$$

 $l_{\scriptscriptstyle p}$: polymer's characteristic persistence length

s: tangent vector at a distance

 θ : between a vector that is tangent to the polymer

problem

Longer than the persistence length

Properties can only be described statistically like a **Three-dimensional random walk**

Shorter than the persistence length

Molecule behaves rather like a flexible elastic rod

Dependence of DNA length

91-bp(base pair) DNA molecules adding high salt (1 M NaCl) buffer

Donor -> acceptor
Looping happened

Dependence of DNA length

exponential fit to this curve gives R.

Using 91-bp initial dsDNA with 10-nucleotide (nt) overhangs

Obtain the looping rate R

Dependence of DNA length

Looping time is represented by 1/R

DNA much shorter than the persistent length: hard to form a loop

Result is different

No DNA length dependence

Dependence of DNA sequence

63-bp duplex length and 10-nt overhang.

TA: nucleosome positioning sequence

E8: A bases in the middle of a random sequence

E8An: inserting A, number of n (n=0,10,17,26,38)

Change in sequence

Change in looping time

Influence of poly-A curvature-inducing

dependence of loop bendability

Dependence of Na+

91-bp initial dsDNA with 8-nt single-stranded overhangs

Unlooping rate **did not change** between 0.5M and 2M Na-Looping rate is **increasing**

Dependence of Na+

exponential fit to this curve gives R.

$$k_{on}[s^{-1}M^{-1}] = \frac{looping \ rate[s^{-1}]}{concentration[M]}$$

no dependence of loop bendability

Dependence of Kon

Dependence of overhang length

91-bp initial dsDNA, but with different overhang length(8,9,10 nt)

Unlooping rate is **decreasing**Looping rate **Does not show significant difference.**

No dependence of loop bendability

Dependence of internal force

91-bp initial dsDNA with 8-nt single-stranded overhangs

Monomer circles

Monomer circles

Elastic energy provide a shear force

melts 20 times as fast in a DNA circle as in a DNA dimer

dependence of loop bendability

Dependence of nick, mismatch

87 bp initial dsDNA with 10 nt overhangs

59 bp initial dsDNA with 10 nt overhang

loop rate

Double nick > single nick > intact DNA

loop rate

C-C mismatch DNA > intact DNA

dependence of loop bendability

Dependence of j factor

j value means the effective concentration of the sticky ends

j values not matched the shorter length DNA We don't get to j factor by using WLC model.

conclusion

Determination of Short length DNA loop bendability

