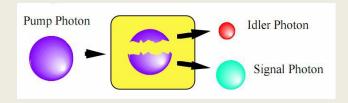
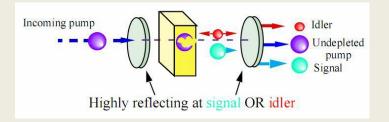
Optical parametric generator and amplifier

Min Heasik's Ph.D. thesis topic: Construction of sum-frequency generation spectroscopic setup and the second-harmonic phase measurements on quartz crystal and ordered organic samples

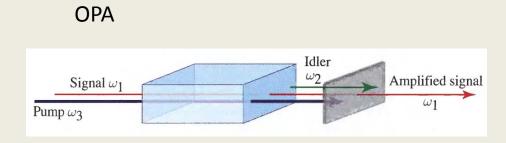

Zaure 2013.06.01

Optical parametric generator and amplifier


- Introduction
- Phase matching
- Properties of nonlinear optical crystals
- Construction
- Summary

Introduction OPA and OPG

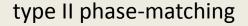
The frequency of the all beams is given as $\omega_i < \omega_s < \omega_p$

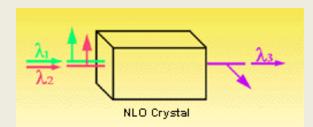


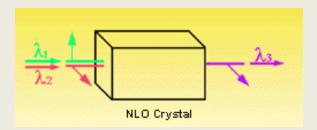
A suitable OPG nonlinear crystal (BBO) enclosed in cavity

The energy conservation is satisfied

$$\hbar\omega_p = \hbar\omega_s + \hbar\omega_i$$
$$\hbar k_p = \hbar k_s + \hbar k_i$$

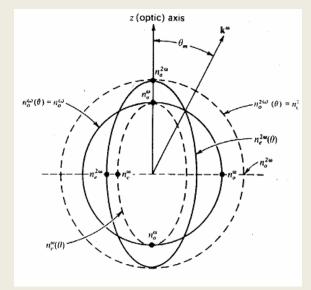



Phase matching


Two types of phase-matching are classified in consideration of polarization of lasers.

If the polarizations of two input beams (for sum frequency) are parallel to each other, it is called type I phase-matching. If the polarizations are perpendicular to each other, it is called type II phase-matching

type I phase-matching



Phase matching

Phase-matching condition ($\Delta k=0$) is very essential to be fulfilled in order to achieve maximum gain, in term of indexes of refraction, the phase matching is given as

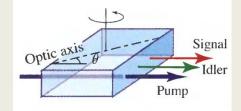
$$n_p = \frac{n_i \omega_i}{\omega_p} + \frac{n_s \omega_s}{\omega_p}$$

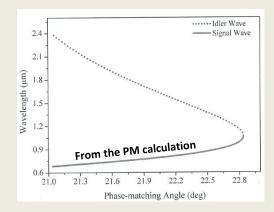
Negative uniaxial crystal which the type I phase-matching

$$n_{ep}(\theta_m)\omega_p = n_{os}\omega_s + n_{oi}\omega_i$$

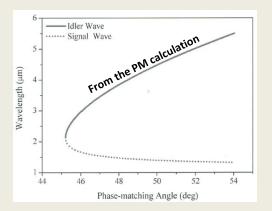
$$\frac{1}{n_{ep}^2(\theta_m)} = \frac{\sin^2(\theta_m)}{n_{ep}^2} + \frac{\cos^2(\theta_m)}{n_{op}^2}$$

The phase matching angle

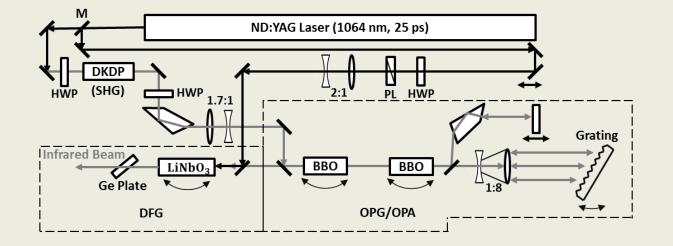

$$\theta_{m} = \sin^{-1} \left[\frac{n_{ep}}{n_{ep}(\theta_{m})} \sqrt{\frac{n_{op}^{2} - n_{ep}^{2}(\theta_{m})}{n_{op}^{2} - n_{ep}^{2}}} \right]$$

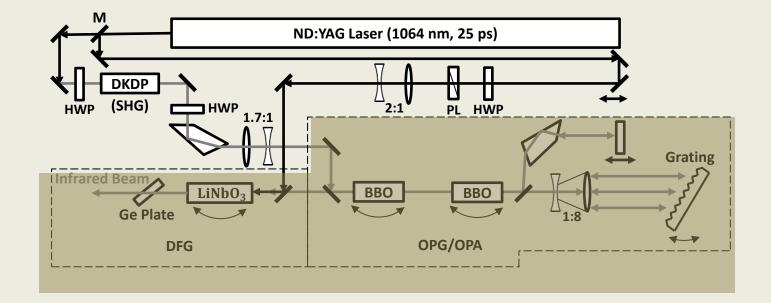

Negative uniaxial nonlinear crystal (ne<no) of KDP.

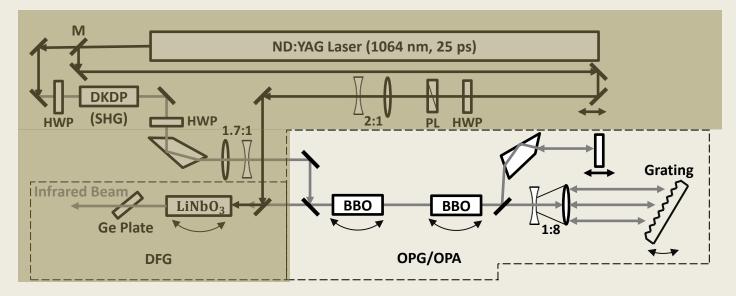
Properties of nonlinear optical crystals


	LiNbO3	BBO
Optical symmetry	negative uniaxial crystal $(n_o>n_e)$	negative uniaxial crystal $(n_o > n_e)$
Reflective index		
at 1064 nm	$n_o = 2.23, n_e = 2.14$	$n_o = 1.65, n_e = 1.54$
at 532 nm	$n_o = 2.23, n_e = 2.14$	$n_o = 1.68, n_e = 1.56$

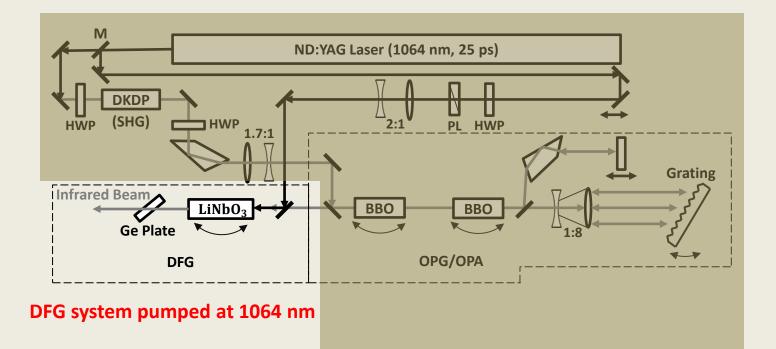
Angle-tuning curve




Angle-tuning curve to change the output wavelength in the optical parametric process with type-I PM of the BBO. The pump beam is at 532 nm. From the PM calculation

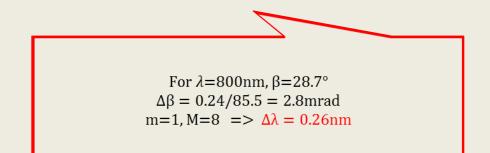


Angle-tuning curve to change the output wavelength in the optical parametric process with type-I PM of the $LiNbO_3$. The pump beam is at 1064 nm. From the PM calculation


- **DKDP**: θ =53.5°, 12x12x15mm, type-II phase matching
- **BBO**: *θ*=31.3°, 6x6x8 mm
- Grating: 1200 grooves/mm
- LiNbO₃: θ =47°, 12x10x40mm, type–I phase matching
- **Ge plate:** $\theta = 76^{\circ}$ {Brewster angle}

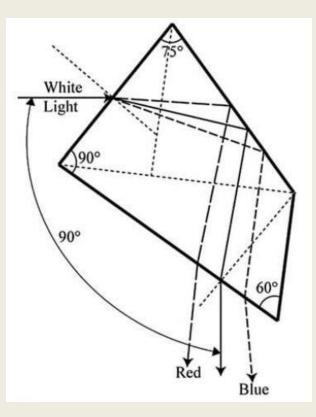
OPG/OPA system pumped at 532 nm with a grating

The OPG/OPA output beam is tunable near-IR from 0.74 to 1.88 μ m



• The spectral bandwidth :

$$\Delta \lambda = \Delta \beta \times \frac{d \times \cos \beta}{m \times M}$$


 β – the average diffraction angle of the dispersed seed beam

- $\Delta\beta$ the angular spread of the seed beam
- d the groove spacing
- m the order of diffraction
- M the magnification of the telescope

Pellin-Broca prism

- Pellin–Broca prism produces a deviation of 90°c as well as an angular spectrum; as outlined in dashed lines, can be thought of as being made up of two 30°-60°-90° prisms and a 45°-90°-45° prism.
- One color is refracted through exactly 90°.
- Rotating the prism selects different colors.
- Ideal for selecting a particular wavelength with minimal change to an optical system.

- 1. OPG and OPA
- 2. Phase matching
- 3. Nonlinear crystals
- 4. OPG/OPA setup

The end

