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Introduction

Under electric dipole approximation, SFG cannot be observed in centrosymmetric media.
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SFG with picosecond light pulses - bandwidths narrower than the resonances under investigation.

One of the few attempts to obtain subbandwidth resolution
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Another attempt to obtain subbandwidth resolution
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Scheme of Set up and Theory

NEW attempt: Fourier Transform Sum-frequency
Resolution independent on the input pulse characteristic

It is determined by the maximum SAMple
optical path difference between /___: .....
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Use He-Ne laser for path-length calibration




Induced nonlinear polarization
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If the dispersion of ¥ @ in wy is negligible, we find
that
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For a given set of rir and 7y, the f-polarized SFG
output is proportional to flPi(:z)(t,TIR,Tv)let. Inte-
gration of this output over 7y yields the desired SFG
interferogram:

(2) 2
‘ P; 7 (t, TR, TV) ‘ drv

2) F 2
— 4’Pv,if ‘)(.,;J-k(w = wy + WR)ER, r(®IR)

1

X COSZ(E a)IRTIR)da)IR = S(71R), (4)

where B; = [|Ev j(t — 7v)|?d7y.

Fourier Transform of S(7[r)give
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n-octadecyltrichlorosilane
[CH:CH.:SICl: (OTS)] monolayer on
fused silica

Interferograms were obtained by
summing five interferograms with
Ty 0, 250, 500, 750, 1000 fs

Maximum IR path difference 1.5 mm
spectral resolution is 6.6 cm™!

The spectrum are normalized by the
IR pulse spectrum FWHM of 150 cm™
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Fig. 2.
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Fig. 3. (a) FT-SFG interferometer trace, along with

(b) its F'T (squares) and the conventional picosecond SFG
Polarization configuration, SSP.

spectrum (circles).

The peaks assignment here are
more accurate than that in ref6
because of using He-Ne laser for
path-length calibration

Main drawback

» Slow scanning speed of IR
interferometer

As in conventional FT
spectroscopy, shot noise and
source noise in the
interferogram should appear
as noise over the entire
frequency range in the FT
spectrum
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Conclusion

Main advantages of FT-SFG are
» The source-independent spectral resolution
» The absolute frequency calibration




