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Abstract: Understanding the molecular mechanism of (il IR
G Here, we address this question by employing label-free vibrational sum
frequency (VSF) spectroscopy to (i D
DPTAP(1,2-dipalmitoyl-3-trimethylammonium-propane) and diC14-amidine (D
DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) (i I O U approach
has the advantage both of allowing us to explicitly probe intermolecular interactions and of providing insight
into the structure of water and lipids around DNA at the lipid interface. We find, by examination of the OD
stretch of interfacial D20, that water structure differs markedly between systems containing DNA adsorbed
fo cationic and those that contain DNA adsorbed to zwitterionic lipid monolayers (in the presence or absence
of Co . (The spectral response of interfacial water in the cafionic system is consistent with a highly
S Further, by investigation of CH stretch modes of
the diC14-amidine lipid tails, we demonstrate that (i D
lordering of lipid tails.




Motivation

(® Species-specific.

(») Hard to control DNA contents.
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<viral infection>

(® Efficiency of transfection
depends on complexing agent.

Complexing
Agent

(® Choosing DNA is available.

=) Lipid cofactor is important
in gene therapy and non-viral transfection.

<Non-viral transfection>
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In H,O case.....
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Samples —

Intensively studied for
non-viral transfection

NH
Toxic to mammalian cell

_/G=NH—C(CHy),
NA

T T N R ] Wlth (DNA—I— CaClz)

Q Non toxic (usually found
in living organism)

Figure 1. Molecular structure of (A) diCl4-amidine; (B) DPTAP: and (C)
DPPC.



SFG spectra on cationic lipid monolayer —
* SSP polarization combination / 35° for Vis (800nm) & 40° for IR (3300nm~5000nm)
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Contribution from weakly hydrogen bonded D,0O
due to DNA adsorption (hydrophobic pocket)

~100mM of A-DNA is enough to reduce surface electric field.

Interfacial water structure is changed.



SFG spectra on zwitterionic lipid monolayer  ——
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In the case of Zwitterionic lipid,
DNA doesn’t affect too much.

Ca?* change the headgroups
more cationic.



OD stretch intensities
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Figure 3. Fitted hydrogen bonded OD stretch intensities (i.e.. (4,/T,)%)
from data in Figure 2. The hydrogen bonded OD stretch peak is highlighted
in the transparent red rectangle in Figure 2A. These results clearly show
that, while OD intensity underneath all lipid monolayers decreases with
increasing DNA concentration, the change underneath the charged lipids is
much larger.
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Figure 4. Fitled spectral intensities for “weak’ OD stretch peak for the
spectra shown in Figure 2. panels A and B. These results clearly indicate
that the intensity of the “weak™ OD strelch peak plateaus above =30 pM
bulk concentration of DNA.

As DNA concentration increase, hydrogen bonded OD

contribution is decreased.

‘weakly’ bonded OD contribution increase with DNA concentration.



Isotopic dilution —

6.25% of D,0 / 37.5% of HDO / 56.25% of H,O
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Figure 5. Spcctra of the OD stretch frequency window of HOD in H,O
given a phosphate buffered subphase containing increasing concentration
of DNA beneath a diCl14-amidine monolayer. OD stretch spectra of HOD
have only a single peak structure and clearly show that the resonance shifts
toward higher frequencies as it decreases in amplitude with increasing DNA

concentration.
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Structural change of monolayer with DNA
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Figure 6. SFG specl'ra (dots) of diCl4-amdine at 26 mN/m (gray) and
DPTAP (black) at 20lmN/m. The vertical lines indicate the positions of
methylene symmetric gtretch (CH,SS), methyl symmetric stretch (CH5SS),
methylene asymmetric stretch-Fermi resonance (CH,FR), methylene asym-
metric stretch ( CHQASl methyl symmetric stretch-Fermi resonance (CH;FR)
and methyl asymmetrfc stretch (CH3AS). The DPTAP spectrum is offset
for clarity. The solid jurves are fits to the data using a Lorentzian model.
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Figure 7. (Upper panel) m— Area isotherms for a diC14-amidine monolayer
above a phosphate buffered subphase in the absence (red line) and in the
presence (blue line, 150 pm) of DNA. For a given lipid density. the addition
of DNA to the subphase results in an increase in surface pressure, or
equivalently, a condensation of lipid molecules. (Lower panel) VSF intensity
of CH-SS and CHsSS resonances (triangle and circle, right axis) and their
ratio R (squares, left axis) of diC14-amidine monolayer on DNA solution
with various concentrations. The solid lines are guides to the eye.



