Dependence of the Conformational Isomerism in 1-*n*-Butyl-3-methylimidazolium Ionic Liquids on the Nature of the Halide Anion

Yasuhiro Umebayashi,*,[†] Hiroshi Hamano,[†] Seiji Tsuzuki,^{*,‡} José N. Canongia Lopes,[§] Agilio A. H. Pádua,[∥] Yasuo Kameda,[⊥] Shinji Kohara,[#] Taishi Yamaguchi,[†] Kenta Fujii,[∇] and Shin-ichi Ishiguro[†]

Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Center 5, Tsukuba, Ibaraki 305-8565, Japan, Centro de Química Estrutural, Instituto Superior Técnico, 1049 001 Lisboa, and Instituto de Tecnologia Química e Biológica, UNL, Av. República Ap. 127, 2780 901 Oeiras, Portugal, Laboratoire Thermodynamique et Interactions Moléculaires, Université Blaise Pascal Clermont-Ferrand and CNRS UMR6272, France, Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Kojirakawa-machi 1-4-12, Yamagata 990-8560, Japan, Japan Synchrotron Radiation Research Institute (JASRI), Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan, and Neutron Science Labolatory, Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan

Received: May 17, 2010; Revised Manuscript Received: July 24, 2010

Molecular Conformation

dihedral angle:

1-n-butyl-3-methylimidazolium (C4mim+)

With respect to the N1-C7-C8-C9 and C7-C8-C9-C10 dihedral angle, yielding TT (T-trans) and GT or G'T (G, G'-gauche) isomers

- G dihedral angle is 60°
- G' dihedral angle is -60°

Because the gauche conformation has its mirror image (e.g. $G=60^{\circ}$ and $G'=-60^{\circ}$), when this analysis is applied to the two dihedral angle N1-C7-C8-C9 and C7-C8-C9-C10, nine possible conformers are generated:

TT, TG, TG', GT, GG, GG', G'T, G'G, G'G'

Around 625 cm⁻¹, correspond to trans isomers, such as TT, TG and TG'

Around 600 cm⁻¹ correspond to gauche isomers, such as GG, GG', G'G', G'G, GT, G'T

As the halide ionic radius decreases, bands at 600 cm⁻¹ increases, while band at 624 cm⁻¹ decreases, indicates the gauche isomers prefer a stronger, more localized, negative electrostatic field formed by smaller anions

Thermodynamic Parameters calculated by Raman spectra

$$K_{iso} = c_B / c_A \tag{1}$$

$$\Delta_{iso}G^0 = -RT\ln K_{iso} = -RT\ln(c_B/c_A)$$
⁽²⁾

$$I = Jc \tag{3}$$

$$-RT\ln(I_B/I_A) = \Delta_{iso}H^0/T - \Delta_{iso}S^0 - R(J_B/J_A)$$
(4)

$$\Delta_{iso}G^0 = \Delta_{iso}H^0 - T\Delta_{iso}S^0$$
⁽⁵⁾

 k_{iso} — equilibrium constant c_A, c_B — concentration of each isomer I_A, I_B — Raman band intensity for A and B isomers J_A, J_B — Raman scattering coefficient for A and B isomers

Bands at 600 and 625 cm⁻¹ should reflect the relative amounts of the corresponding isomers, and thus allow calculation of the Gibbs free energy of the isomerization process, the intensity can be recognized as I_B and I_A .

$$-RT\ln(I_B / I_A) = \Delta_{iso} H^0 / T - \Delta_{iso} S^0 - R(J_B / J_A)$$

 $\Delta_{iso}H$ are negative for both bmimCl and bmimBr, but positive for bmimI

$$RT\ln(I_B/I_A) = \Delta_{iso}H^0/T - \Delta_{iso}S^0 - R(J_B/J_A)$$

$$\Delta_{iso}G^0 = \Delta_{iso}H^0 - T\Delta_{iso}S^0$$

TABLE 1: Gibbs Free Energy $\Delta_{iso}G^{\circ}$, Enthalpy $\Delta_{iso}H^{\circ}$, and Temperature Multiplied Entropy $T\Delta_{iso}S^{\circ}$ for the *TT* to *GT* (or *G'T*) Isomerization Process at 298 K

	[C ₄ mim][Cl]		[C ₄ mim][Br]		[C ₄ mim][I]	
	Raman	MD	Raman	MD	Raman	MD
$\Delta_{iso}G^{\circ}/kJ \text{ mol}^{-1}$	0.0(5)	-3.1(3)	0.3(2)	-2.3(3)	2.0(2)	2.4(1)
$\Delta_{iso}H^{\circ}/kJ \text{ mol}^{-1}$	-3.7(4)	-2.8(2)	-1.6(2)	-2.3(3)	3.9(2)	0.4(1)
$T\Delta_{iso}S^{\circ}/kJ \text{ mol}^{-1}$	-3.6(3)	0.2(2)	-2.0(2)	0.1(1)	1.9(2)	0.0(0)

 $\Delta_{iso}G^{\circ} < 0$ favoured reaction(Spontaneous) $\Delta_{iso}G^{\circ} = 0$ Neither the forward nor the reverse reaction prevails (Equilibrium)

 $\Delta_{iso}G^{\circ} > 0$ disfavoured reaction(Nonspontaneous)

• $\Delta_{iso}G$ are close to zero, indicates the trans and gauche isomers coexist in the ionic liquid

• Δ_{iso} G becomes more negative with the decrease of the halide ionic radius, indicates the gauche isomers are more stable than trans isomers in the existence of smaller halide ions.