Stretching DNA

John F. Marko*

Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10021-6399

Eric D. Siggia

Laboratory of Atomic and Solid State Physics, Clark Hall, Cornell University, Ithaca, New York 14853-2501

Received May 9, 1995; Revised Manuscript Received September 18, 1995^{\star}

ABSTRACT: A statistical mechanical treatment of the wormlike chain model (WLC) is used to analyze experiments in which double-stranded DNA, tethered at one end, is stretched by a force applied directly to the free end, by an electric field, or by hydrodynamic flow. All experiments display a strong-stretching regime where the end-to-end distance approaches the DNA contour length as $1 /\left(\right.$ force $^{1 / 2}$, which is a clear signature of WLC elasticity. The elastic properties of DNA become scale dependent in the presence of electrostatic interactions; the effective electric charge and the intrinsic bending elastic constant are determined from experiments at low salt concentration. We also consider the effects of spontaneous bends and the distortion of the double helix by strong forces.

Contents

Section I Introduction

Section II discuss the basic statistical mechanics of the WLC under tension

Section III
treats electrostatic effects, important since DNA is charged; at low ionic strengths DNA is stiffened by Coulomb self-repulsion

Section IV
Section IV discusses experiments that stretch tethered DNAs with one free

Section \vee discusses recent experiments

Random Walk models of polymer(ideal chain)

1-D case

3-D case

Physical biology of the cell, Rob phillips, 283p
a three dimensional random walk as an arrangement of linked segments of length a

All bond lengths are the same
no correlation between the directions of bond angles
no treatment of torsional angles.
no interactions between monomers

average end-to-end distance of the polymer

Expected value of the walker's distance form the origin, R , after N step

$$
\langle R\rangle=\left\langle\sum_{i=1}^{N} x_{i}\right\rangle
$$

Variance of the probability distribution of R

$$
\left\langle R^{2}\right\rangle=\left\langle\sum_{i=1}^{N} \sum_{j=1}^{N} x_{i} x_{j}\right\rangle \quad\left\langle\quad\left\langle R^{2}\right\rangle=\left\langle\sum_{i=1}^{N}\left\langle x_{i}^{2}\right\rangle+\sum_{i \neq j=1}^{N}\left\langle x_{i} x_{j}\right\rangle\right\rangle\right.
$$

100 nm

Each and every step is independent of all steps that precede and follow it. In addition $\quad x_{i}= \pm a \quad\left\langle x_{i}{ }^{2}\right\rangle=a^{2}$

Result that

$$
\left\langle R^{2}\right\rangle=N a^{2} \quad \sqrt{\left\langle R^{2}\right\rangle}=a \sqrt{N}
$$

The distance from the origin grows as the square root of the number of segments in the chain

persistence length, worm-like chain model

Worm like chain model

particularly suited for describing stiffer polymers
all pointing in roughly the same direction
At room temperature, the polymer adopts a conformational ensemble that is smoothly curved

Polymer of length L
path of the polymer $s \in(0, l)$

$$
\hat{t}(s)=\frac{\partial \vec{r}(s)}{\partial s}
$$

$\hat{t}(s)$ is unit tangent vector to the chain at s
$\vec{r}(s)$ is position vector along the chain

$$
\vec{R}(s)=\int_{0}^{L} \hat{t}(s) d s
$$

end-to-end distance

Persistence length in worm like chain model

$\langle\vec{t}(s) \cdot \vec{t}(0)\rangle=<\cos \theta(s)>=e^{-s / A}$
A is polymer's characteristic persistence length.
S is tangent vector at a distance
θ is between a vector that is tangent to the polymer

Persistence length

basic mechanical property quantifying the stiffness of a polymer.
Persistence length of DNA in vivo(150mM Na+, other ions)= 50nm, 150bp

mean square end-to-end distance of the polymer

$$
\begin{aligned}
&\left\langle R^{2}\right\rangle=\langle\vec{R} \cdot \vec{R}\rangle \\
&=\left\langle\int_{0}^{L} \hat{t}(s) d s \cdot \int_{0}^{L} \hat{t}\left(s^{\prime}\right) d s^{\prime}\right\rangle \\
&= \int_{0}^{L} d s \int_{0}^{L}\left\langle\hat{t}(s) \cdot \hat{t}\left(s^{\prime}\right)\right\rangle d s^{\prime} \\
&= \quad \int_{0}^{l} d s \int_{0}^{l} e^{-\left|s-s^{\prime}\right| / p} d s^{\prime} \\
& \begin{array}{ll}
\left\langle R^{2}\right\rangle \quad & 2 A L\left[1-\frac{A}{L}\left(1-e^{-L / A}\right)\right] \\
\text { If } \mathrm{L} \gg \mathrm{~A} & \left\langle R^{2}\right\rangle=2 A L \\
& \text { WLC model }
\end{array}
\end{aligned}
$$

Entropic Elasticity of the Worm like Chain

Bending costs an energy per length

$$
\begin{array}{cl}
\quad E_{b e n d}= & \frac{k_{B} T A}{2} k^{2} \\
\hat{t}=\left|\partial_{s} \vec{r}\right| \quad & \text { Tangent vector (unit vector) } \\
k=\left|\partial_{s}^{2} \vec{r}\right| \quad & \text { Curvature(the reciprocal of the bending radius) } \\
k_{B} T A \quad & \text { Flexural rigidity }
\end{array}
$$

Effective energy of a stretched WLC

$$
\begin{aligned}
& \frac{E}{k_{B} T}=\int_{0}^{L} \frac{A k^{2}}{2} d s-f z \\
& z \equiv \hat{z} \cdot[\vec{r}(L)-\vec{r}(0)]
\end{aligned}
$$

compute the equilibrium extension using the Boltzmann distribution
$e^{-E_{b e n d} / k_{B} T}$

Simple Calculation of WLC strong-stretching behavior

Large forces are applied to a WLC
Extension approaches the total length L

Tangent vector fluctuates only slightly around \hat{z}
From the constraint $|\hat{\boldsymbol{t}}|=1$
Independent components $\boldsymbol{t}_{x} \quad \boldsymbol{t}_{y}$
t_{z} Fluctuations are quadratic in the two-vector $\vec{t}_{\perp} \equiv\left[t_{x}, t_{y}\right]$
$t_{z}=1-t_{\perp}^{2} / 2+\vartheta\left(t_{\perp}^{4}\right)$
The quadratic order $k^{2}=\left(\partial_{s} \vec{t}_{\perp}\right)^{2}$

Obtain Gaussian approximation
$\frac{E}{k_{B} T}=\frac{1}{2} \int_{0}^{L} d s\left[A\left(\partial_{s} \vec{t}_{\perp}\right)^{2}+f \vec{t}_{\perp}^{2}\right]-f L$

Fourier transforms decouple the energy into normal modes
$\tilde{t}_{\perp}(q) \equiv \int d s e^{i q s} \vec{t}_{\perp}(s)$
$\frac{E}{k_{B} T}=\frac{1}{2} \int \frac{d q}{2 \pi}\left[A q^{2}+f\right]\left|\tilde{\tau}_{\perp}\right|^{2}-f L$

Average of $t_{\perp}{ }^{2}$ at any point \mathbf{s} is simply given by

$$
\left\langle t_{\perp}{ }^{2}\right\rangle=\int \frac{d q}{2 \pi}\left\langle\left.\tilde{t}_{\perp}(q)\right|^{2}\right\rangle=2 \int \frac{d q}{2 \pi} \frac{1}{A q^{2}+f}=\frac{1}{(f A)^{1 / 2}}
$$

$$
\left.\left\langle t_{\perp}^{2}\right\rangle=\left.\int \frac{d q}{2 \pi}\langle | \tilde{t}_{\perp}(q)\right|^{2}\right\rangle=2 \int \frac{d q}{2 \pi} \frac{1}{A q^{2}+f}=\frac{1}{(f A)^{1 / 2}}
$$

The leading factor of 2 in equation counts the two components of \vec{t}_{\perp}
The extension is

$$
\frac{z}{L}=\hat{t} \cdot \hat{z}=1-\left\langle\vec{t}_{\perp}^{2}\right\rangle / 2=1-\frac{1}{(4 f A)^{1 / 2}}
$$

In large forces,
z approaches $\mathrm{L} \quad \overline{f^{1 / 2}}$
Side to side excursions of the chain over arc length s

$$
R_{\perp}^{2}=\frac{2}{f}\left(s-\frac{1-\exp \left[-s(f / A)^{1 / 2}\right.}{(f / A)^{1 / 2}}\right)
$$

Interpolation formula for the WLC force versus extension

$$
\frac{f A}{k_{B} T}=\frac{z}{L}+\frac{1}{4(1-z / L)^{2}}-\frac{1}{4}
$$

This is asymptotically exact in the large and small force limits

