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Optical Resolution
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Super-resolution optical microscopy is a rapidly evolving area of
fluorescence microscopy with a tremendous potential for impact-
ing many fields of science. Several super-resolution methods have
been developed over the last decade, all capable of overcoming the
fundamental diffraction limit of light. We present here an ap-
proach for obtaining subdiffraction limit optical resolution in all
three dimensions. This method relies on higher-order statistical
analysis of temporal fluctuations (caused by fluorescence blinking/
intermittency) recorded in a sequence of images (movie). We
demonstrate a 5-fold improvement in spatial resolution by using a
conventional wide-field microscope. This resolution enhancement
is achieved in iterative discrete steps, which in turn allows the
evaluation of images at different resolution levels. Even at the
lowest level of resolution enhancement, our method features
significant background reduction and thus contrast enhancement
and is demonstrated on quantum dot-labeled microtubules of
fibroblast cells.
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contrast. We argue that no other super-resolution microscopy

technique can compete with the simplicity of the SOFI approach
and its undemanding requirements with regard to fluorescent
labels, optics, and other hardware. The experimental procedure
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Principle of SOFI

Emitter distribution
In the object plane
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Three Condition for SOFI

1. The fluorescent label has to exhibit at least two different emission
states. For example, these states can be a fluorescent and a
nonfluorescent one, but in principle any two or more states that are
optically distinguishable will do.

2. Different emitters have to switch between states repeatedly and
independently from each other in a stochastic way.

3. For this approach, the image should be acquired with pixels smaller
than the diffraction limit. Resolution less than the pixel size will be the
topic of a future publication.
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Theory 2 - Correlation Function to Cumulant Function

PSF in 2"d order Image
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All cross terms caused by lower-order correlation contributions are
elimunated in cumlulants.
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Theory 3 — Cumulant Function
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Setup

Microscope Setup and Data Analysis. Movies were taken on an inverted
wide-field microscope (Olympus IX71, objective: UPlanApo 60X, 1.45, Oil). A
470-nm LED array device was used as a light source (Lumencor Aura Light
Engine) and a CCD camera (Andor iXon + 885) was used to record the signal.
Filter set was dichroic [505 DCXR, Chroma Technology; emission (D620/40,
Chroma Technology]. Magnification was adjusted to obtain 35 nm per pixel.
To generate and evaluate SOFl images, movies were analyzed by using a
custom-written Matlab (Mathworks) code. The shortest accessible time lag is
the frame integration time (time between two subsequent frames). We
computed all SOFl images for the zero time lag only C, (r,0,0,...0). In this case
a computationally less expensive expression for the cumulants formula can be
used (see S/ Text). Cumulants of orders > 2 can turn negative depending on the

underlying fluctuation pattern. SOFl images are therefore displayed as abso-
lute values.



Results 1 — Images of Two Quantum Dots due to Correlation Orders
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Results 2 — Point Spread Function from Single Quantum Dot
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Results 3 — Resolution Enhancement
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Results 4 — SOFI Images of Cells (a-tubulin network of a 3T3 fibroblast cell)
A deconvolved
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Limitation 1. The Brightness Scaling of the Images

n-fold larger brightness will appear 2" times brighter in nt" order Image
-> very high Dynamic Range
-> Masking effect of dim emitters in proximity to bright emitters

Blue to red : cumulant order 1,2,4,6
Gray : individual diffraction limit
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Limitation 2. Limited measurement time

Theoretically, SOFI eliminate any kinds of noise

Acquisition times are limited
( by photobleaching ... )

Potential to super-resolution imaging
at high frame rates

QDs remain in the on state for a few
seconds leading to very different
brightness values in image

-> Need to uniform and fast blinking
emitter for SOFI at high frame rates
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Conclusion
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contrast. We argue that no other super-resolution microscopy
technique can compete with the simplicity of the SOFI approach
and its undemanding requirements with regard to fluorescent
labels, optics, and other hardware. The experimental procedure

pccontially amoimnte tn taline a9 movie nf a fliietnatine cional

ground reduction. Last, SOFI is not limited to blinking between
fluorescent on and off states. Any (even nonfluorescent) fluc-
tuating objects, such as rotating dipoles, or blinking of celestial
objects, such as binary stars, could be imaged and superresolved

by SOFL



