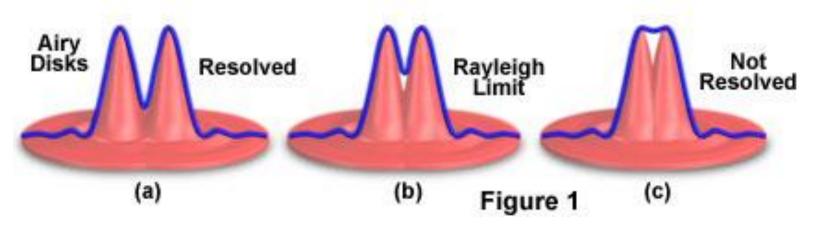

Optical Resolution

Fraunhofer Diffraction


Single slit & circular aperture

Circular aperture -> Airy disk

Optical Resolution

Airy Disk Separation and the Rayleigh Criterion

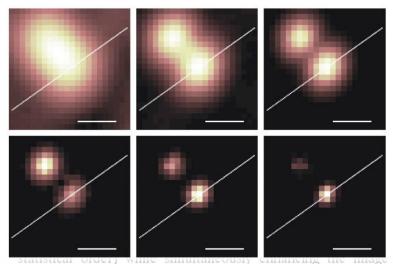
$$d = \frac{0.61\lambda}{NA}$$

d = Rayleigh Criterion length λ = wavelength

NA: Objectvie Numerical Aperture

For visible wavelength d ~ 250nm

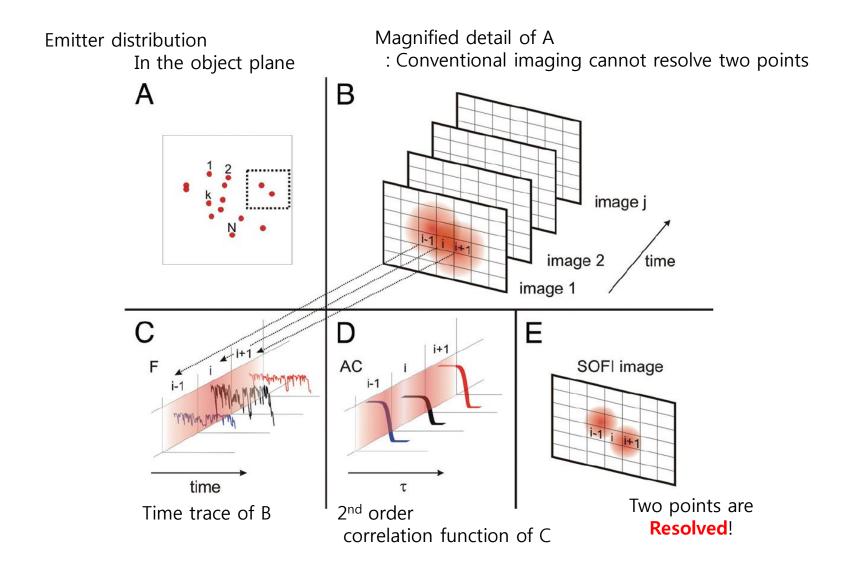
Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)


T. Dertinger^{a,1}, R. Colyer^a, G. Iyer^a, S. Weiss^{a,b,c,1}, and J. Enderlein^{d,1}

Departments of ^aChemistry and Biochemistry and ^bPhysiology, and ^cCalifornia NanoSystems Institute, University of California, Los Angeles, CA 90095; and ^dIII. Institute for Physics, Georg-August-University, 37073 Göttingen, Germany

Edited by John W. Sedat, University of California, San Francisco, CA, and approved October 29, 2009 (received for review July 15, 2009)

Super-resolution optical microscopy is a rapidly evolving area of fluorescence microscopy with a tremendous potential for impacting many fields of science. Several super-resolution methods have been developed over the last decade, all capable of overcoming the fundamental diffraction limit of light. We present here an approach for obtaining subdiffraction limit optical resolution in all three dimensions. This method relies on higher-order statistical analysis of temporal fluctuations (caused by fluorescence blinking/ intermittency) recorded in a sequence of images (movie). We demonstrate a 5-fold improvement in spatial resolution by using a conventional wide-field microscope. This resolution enhancement is achieved in iterative discrete steps, which in turn allows the evaluation of images at different resolution levels. Even at the lowest level of resolution enhancement, our method features significant background reduction and thus contrast enhancement and is demonstrated on quantum dot-labeled microtubules of fibroblast cells.


cumulants | fluorescence | quantum dots | superresolution microscopy | intermittency

contrast. We argue that no other super-resolution microscopy technique can compete with the simplicity of the SOFI approach and its undemanding requirements with regard to fluorescent labels, optics, and other hardware. The experimental procedure

Seoncheol Cha
Department of Physics, Sogang University

Principle of SOFI

Three Condition for SOFI

1. The fluorescent label has to exhibit at least two different emission states. For example, these states can be a fluorescent and a nonfluorescent one, but in principle any two or more states that are optically distinguishable will do.

2. Different emitters have to switch between states repeatedly and independently from each other in a stochastic way.

3. For this approach, the image should be acquired with pixels smaller than the diffraction limit. Resolution less than the pixel size will be the topic of a future publication.

Theory 1 – Correlation Function

Fluorescence source distribution

$$\sum_{k=1}^{N} \delta(\mathbf{r} - \mathbf{r}_k) \cdot \varepsilon_k \cdot s_k(t) \qquad \varepsilon_k : \text{constant molecular brightness} \\ s_k(t) : \text{time-dependent fluctuation}$$

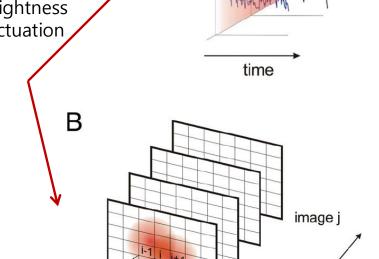
Fluorescence signal at position **r** and time t

$$F(\mathbf{r}, t) = \sum_{k=1}^{N} U(\mathbf{r} - \mathbf{r}_{k}) \cdot \varepsilon_{k} \cdot s_{k}(t)$$

Fluorescence Fluctuation

$$\delta F(\mathbf{r}, t) = F(\mathbf{r}, t) - \langle F(\mathbf{r}, t) \rangle_{t}$$

$$= \sum_{k} U(\mathbf{r} - \mathbf{r}_{k}) \cdot \varepsilon_{k} \cdot [s_{k}(t) - \langle s_{k}(t) \rangle_{t}]$$


$$= \sum_{k} U(\mathbf{r} - \mathbf{r}_{k}) \cdot \varepsilon_{k} \cdot \delta s_{k}(t),$$

2nd order correlation function

$$G_{2}(\mathbf{r}, \tau) = \langle \delta \mathbf{F}(\mathbf{r}, t + \tau) \cdot \delta \mathbf{F}(\mathbf{r}, t) \rangle_{t}$$

$$= \sum_{j,k} U(\mathbf{r} - \mathbf{r}_{j}) U(\mathbf{r} - \mathbf{r}_{k}) \cdot \varepsilon_{j} \cdot \varepsilon_{k} \cdot \langle \delta s_{l}(t + \tau) \delta s_{k}(t) \rangle$$

$$= \sum_{k} U^{2}(\mathbf{r} - \mathbf{r}_{k}) \cdot \varepsilon_{k}^{2} \cdot \langle \delta s_{k}(t + \tau) s_{k}(t) \rangle$$

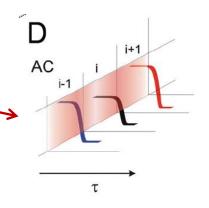


image 1

[i+1] ♣

Theory 2 – Correlation Function to Cumulant Function

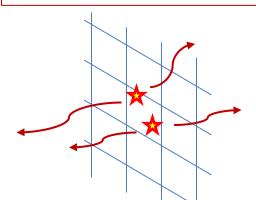
PSF in 2nd order Image

$$U(\mathbf{r}) = \exp\left(-\frac{x^2 + y^2}{2\omega_0^2} - \frac{z^2}{2\omega_{z0}^2}\right) \qquad \Rightarrow U^2(\mathbf{r}) = \exp\left(-\frac{x^2 + y^2}{2\tilde{\omega}_0^2} - \frac{z^2}{2\tilde{\omega}_{0z}^2}\right)$$

Generalize correlation function

$$\tilde{\omega}_{0z} = \omega_{0z}/\sqrt{2}$$
 and $\tilde{\omega}_0 = \omega_0/\sqrt{2}$

$$G_n(\mathbf{r}, \tau_1, \dots, \tau_{n-1})$$


$$= \langle \delta F(\mathbf{r}, t) \delta F(\mathbf{r}, t + \tau_1) \cdots \delta F(\mathbf{r}, t + \tau_{n-1}) \rangle_t$$

Cumulant function $C_n(r,\tau_1,...,\tau_{n-1})$

$$C_n(\mathbf{r}, \tau_1, \ldots, \tau_{n-1}) = \sum_k U^n(\mathbf{r} - \mathbf{r}_k) \varepsilon_k^n w_k(\tau_1, \ldots, \tau_{n-1})$$

 ω_k : correlation-based weighting function

All cross terms caused by lower-order correlation contributions are elimunated in cumulants.

Consider 4 photons from two emitters in one pixel,

4th order correlation contribution is concealed by lower order (2nd order) contribution

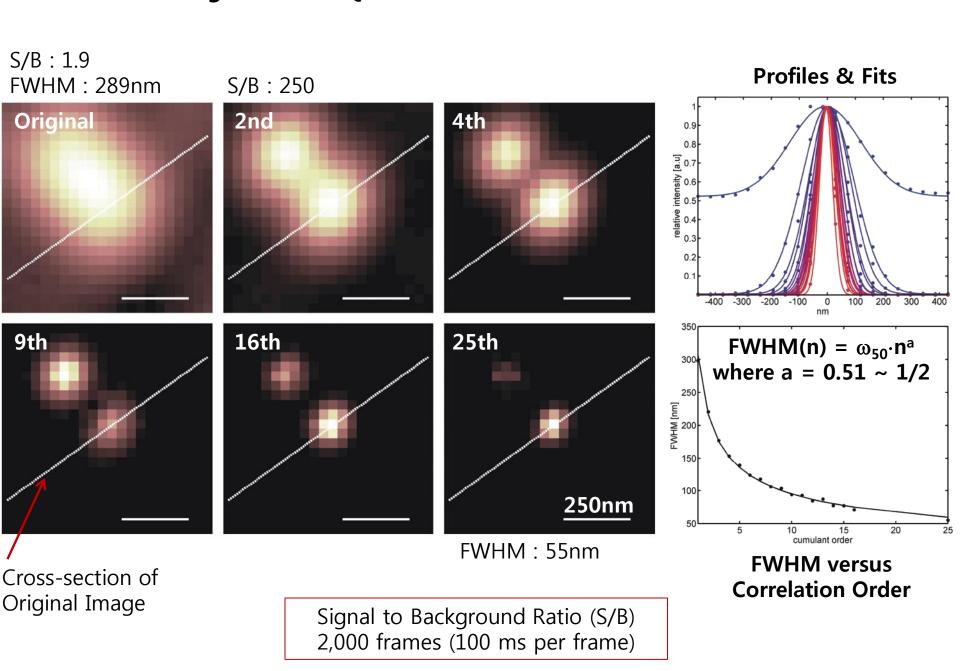
Theory 3 – Cumulant Function

$$C_n(\mathbf{r}, \tau_1, \ldots, \tau_{n-1}) = \sum_k U^n(\mathbf{r} - \mathbf{r}_k) \varepsilon_k^n w_k(\tau_1, \ldots, \tau_{n-1})$$

Resolution is enhanced by a factor √n n-fold larger brightness will appear 2ⁿ times brighter in nth order Image

$$C_{2}(\mathbf{r}, \, \tau_{1}) = G_{2}(\mathbf{r}, \, \tau_{1})$$

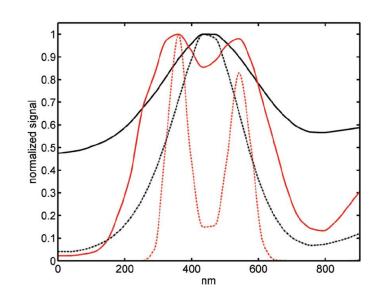
$$C_{3}(\mathbf{r}, \, \tau_{1}, \, \tau_{2}) = G_{3}(\mathbf{r}, \, \tau_{1}, \, \tau_{2})$$


$$C_{4}(\mathbf{r}, \, \tau_{1}, \, \tau_{2}, \, \tau_{3}) = G_{4}(\mathbf{r}, \, \tau_{1}, \, \tau_{2}, \, \tau_{3}) - G_{2}(\mathbf{r}, \, \tau_{1}) \cdot G_{2}(\mathbf{r}, \, \tau_{3})$$

$$- G_{2}(\mathbf{r}, \, \tau_{1} + \tau_{2}) \cdot G_{2}(\mathbf{r}, \, \tau_{2} + \tau_{3}) - G_{2}(\mathbf{r}, \, \tau_{1} + \tau_{2} + \tau_{3}) \cdot G_{2}(\mathbf{r}, \, \tau_{2})$$

Setup

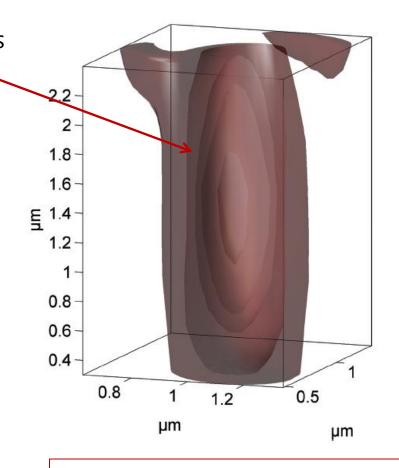
Microscope Setup and Data Analysis. Movies were taken on an inverted wide-field microscope (Olympus IX71, objective: UPlanApo $60\times$, 1.45, Oil). A 470-nm LED array device was used as a light source (Lumencor Aura Light Engine) and a CCD camera (Andor iXon + 885) was used to record the signal. Filter set was dichroic [505 DCXR, Chroma Technology; emission (D620/40, Chroma Technology]. Magnification was adjusted to obtain 35 nm per pixel. To generate and evaluate SOFI images, movies were analyzed by using a custom-written Matlab (Mathworks) code. The shortest accessible time lag is the frame integration time (time between two subsequent frames). We computed all SOFI images for the zero time lag only C_n ($\mathbf{r}, 0, 0, ... 0$). In this case a computationally less expensive expression for the cumulants formula can be used (see SIText). Cumulants of orders > 2 can turn negative depending on the underlying fluctuation pattern. SOFI images are therefore displayed as absolute values.


Results 1 – Images of Two Quantum Dots due to Correlation Orders

Results 2 – Point Spread Function from Single Quantum Dot

Original, 2nd, 4th, 9th and 1/e² iso-surfaces 16th order Image

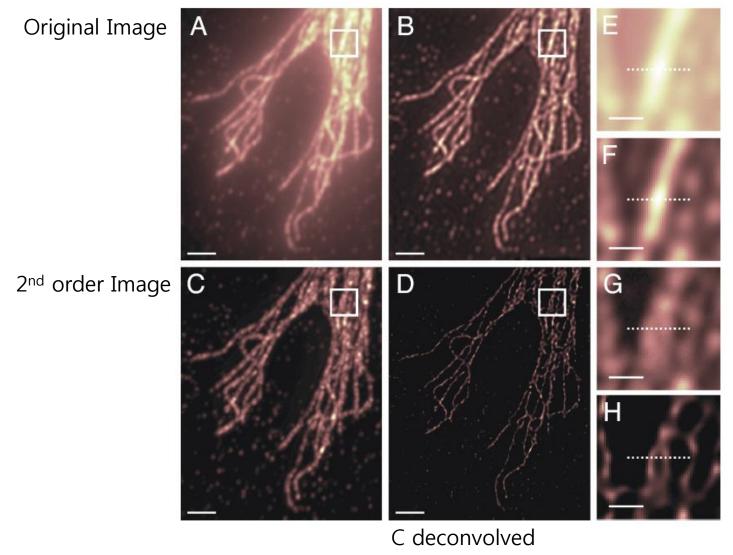
Results 3 – Resolution Enhancement



———— Original Image

2nd order Image

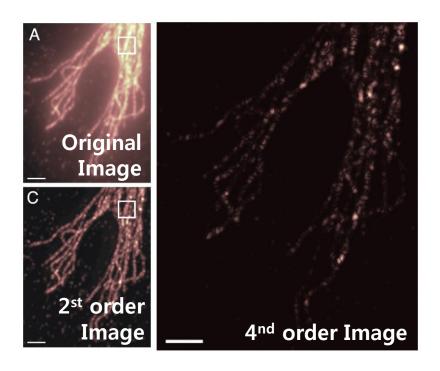
Cross-section of Original Image


Cross-section of 2nd order Image

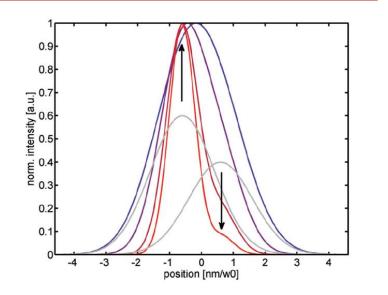
300nm spacing scan image 4,000 frames (75 ms per frame)

Results 4 – SOFI Images of Cells (α -tubulin network of a 3T3 fibroblast cell)

A deconvolved



QD625 Labeled 3,000 frames (100 ms per frame)

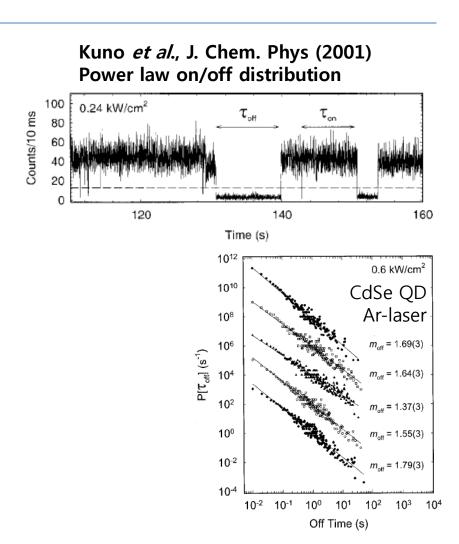

Limitation 1. The Brightness Scaling of the Images

n-fold larger brightness will appear 2ⁿ times brighter in nth order Image

- -> very high Dynamic Range
- -> Masking effect of dim emitters in proximity to bright emitters

Blue to red : cumulant order 1,2,4,6 Gray : individual diffraction limit

Blinking rate: 10% of Frame rate


Limitation 2. Limited measurement time

Theoretically, SOFI eliminate any kinds of noise Acquisition times are limited (by photobleaching ...)

Potential to super-resolution imaging at high frame rates

QDs remain in the on state for a few seconds leading to very different brightness values in image

-> Need to uniform and fast blinking emitter for SOFI at high frame rates

Conclusion

contrast. We argue that no other super-resolution microscopy technique can compete with the simplicity of the SOFI approach and its undemanding requirements with regard to fluorescent labels, optics, and other hardware. The experimental procedure essentially amounts to taking a movie of a fluctuating signal.

ground reduction. Last, SOFI is not limited to blinking between fluorescent on and off states. Any (even nonfluorescent) fluctuating objects, such as rotating dipoles, or blinking of celestial objects, such as binary stars, could be imaged and superresolved by SOFI.