## Femtosecond Optical Kerr Studies on the Origin of the Nonlinear Responses in Simple Liquids

DALE McMORROW, WILLIAM T. LOTSHAW, AND GERALDINE A. KENNEY-WALLACE

## Experimental



Schematic diagram of the experimental apparatus.
P1, P2 : crossed Glan-Taylor polarizer pair,
$\lambda / 4$ : mica quarter-wave plate,
L1 and L2: lenses,
S: sample,
A: aperture,
M : beam steering mirrors,
PMT: photomultiplier tube,
LIA: lock-in amplifier.
The relative pump and probe beam polarizations are shown in the inset with $\theta=45^{\circ}$.

The Role of Molecular Symmetry


Optical Kerr signals for the liquids $\mathrm{CH}_{2} \mathrm{CI}_{2}$ $\mathrm{CHCl}_{3}$, and $\mathrm{CC1}_{4}$ (top to bottom).

(a) Optical Kerr signal for neat CS, together with tail matched theoretical response for the diffusive orientation component, $\tau=1.61 \mathrm{ps}$.
(b) Logarithmic plot of the difference of the two curves given in (a). The straight line corresponds to a time constant of 426 fs .


Optical Kerr signals for (a) $\mathrm{CS}_{2}$ and (b) $\mathrm{CHCl}_{3}$ (dots) shown together with theoretical best fits (solid) generated in accordance with the model described in the text.


The theoretical curves of Fig. 4 given with their respective component curves. See text for details.

## Optical kerr signal fitting



- fwhm :65fs (633nm) sample: CS2
- $T(\tau) \propto \int^{\infty} G_{0}^{(2)}(t) R(\tau-t) d t$
$R(\tau)=\sigma(\tau)+r(\tau)$
$\sigma(\tau)=a_{0} \delta(\tau)$
$r_{2}(\tau)=a_{2} \exp \left(-\frac{\tau}{\tau_{l i b}}\right) \exp \left(-\frac{\alpha^{2} \tau^{2}}{2}\right) \sin \left(\omega_{0} \tau\right)$
$r_{3}(\tau)=a_{3} \exp \left(-\frac{\tau}{\tau_{d i f f}}\right)\left[1-\exp \left(-\frac{\tau}{\beta_{3}}\right)\right]$
$r_{4}(\tau)=a_{4} \exp \left(-\frac{\tau}{\tau_{\text {int }}}\right)\left[1-\exp \left(-\frac{\tau}{\beta_{4}}\right)\right]$
electronic response function


Clear $[g 2, t, \tau, a 0, e, s]$ $a 0=0.27$; reference value
$g 2\left[t_{-}\right]=\operatorname{Sech}\left[\frac{(t)}{0.0797}\right] \wedge 2 ; \quad$ autocorrelation function $e\left[\tau_{-}\right]=a 0 *$ DiracDelta $[t-\tau]$; Electronic function
$\mathbf{s}\left[\tau_{-}\right]=\int_{-\infty}^{\infty} g 2[t] * e[\tau] d t ;$

Plot [s [ $\tau],\{\tau,-1,1\}$, PlotRange $\rightarrow\{-0.05,1\}$, PlotStyle $\rightarrow\{$ RGBColor $[1,0,0]$, PlotRange $\rightarrow\{0,10\}\}$.


## nuclear response function



Clear [g2, r2, sr2, $\mathbf{a}, \mathbf{s}, \mathrm{t}, \mathrm{\tau}$;
Clear[a2, tint, $\alpha, \mathrm{w} 0$ ] ;
tint $=0.329 ; \alpha=4.4 ; \mathrm{w} 0=6.67$;
$\mathrm{a} 2=0.39$; reference value
$g 2\left[t_{-}\right]=\operatorname{Sech}\left[\frac{(t)}{0.0797}\right]^{\wedge} 2 ;$ autocorrelation function
$r 2\left[\tau_{-}\right]=a 2 * e^{-\frac{(\tau)}{\tau i \pi t}} * e^{-\frac{a^{2} *(\tau)^{2}}{2}} * \sin [w 0 *(\tau)]$; nuclear response function
$\mathrm{a}\left[\tau_{-}\right]:=\operatorname{If}[\mathrm{r} 2[\tau] \geq 0,1,0] ;$
$\operatorname{sr2} 2\left[\tau_{-}\right]=r 2[\tau] \star \bar{a}[\tau] ;$
$s\left[\tau_{-}\right]=\int_{-\infty}^{\infty} g 2[t] * s r 2[\tau] d t$


Plot $[s[\tau],\{\tau,-0.8,3\}$, PlotStyle $\rightarrow\{$ RGBColor $[1,0.5,0]\}$, PlotRange $\rightarrow\{-0.05,1\}]$
$0.062166 \mathrm{e}^{(-3.03951-9.68 \mathrm{z}) \mathrm{I}} \operatorname{If}\left[1 . \mathrm{e}^{(-3.03951-9.68 \mathrm{I}) \mathrm{I}} \operatorname{Sin}[6.67 \tau] \geq 0,1,0\right] \operatorname{Sin}[6.67 \tau]$

nuclear response function


Clear $[\mathrm{g} 2, \mathrm{r} 3, \mathrm{~b}, \mathrm{sr} 3, \mathrm{~s}, \mathrm{t}, \mathrm{f}]$;
Clear[a0, a3, $\operatorname{tdiff}, \mathrm{cc}$ ];
$\mathrm{a} 3=0.2 ;$ $\tau \operatorname{diff}=1.69 ; w 0=6.67$; reference value
$g 2\left[t_{-}\right]=\operatorname{Sech}\left[\frac{(t)}{0.05}\right]^{\wedge} 2 ;$ autocorrelation function
$r 3\left[\tau_{-}\right]=a 3 * e^{-\frac{(\tau)}{\tau d i f f}} *\left(1-e^{-(\tau) * w 0}\right) \Rightarrow$ nuclear response function
$\mathrm{b}\left[\tau_{-}\right]:=\operatorname{If}[r 3[\tau] \geq 0,1,0] ;$
$\operatorname{sr} 3\left[\tau_{-}\right]=\mathrm{r} 3[\tau] * \mathrm{~b}[\tau] ;$
$s\left[\tau_{-}\right]=\int_{-\infty}^{\infty} g 2[t] * \operatorname{sr} 3[\tau] d t ;$

$\operatorname{Plot}[\{s[\tau]\},\{\tau,-0.8,3\}$, PlotStyle $\rightarrow\{\operatorname{RGBColor}[0,1,0]\}$, PlotRange $\rightarrow\{-0.05,1\}]$


## nuclear response function



Clear[g2, r4, c, sr4, s, t, $\tau$ ];
Clear[a4, tint];
$\mathrm{a} 4=0.14 ;$ tint $=0.329 ; w 0=6.67 ; \quad$ reference value
$g 2\left[t_{-}\right]=\operatorname{Sech}\left[\frac{(t)}{0.05}\right]^{\wedge} 2 ; \quad$ autocorrelation function
$\mathrm{r} 4\left[\tau_{-}\right]=\mathrm{a} 4 * \mathrm{e}^{-\frac{(\tau)}{\tau i \pi \tau}} *\left(1-\mathrm{e}^{-(\tau) * w 0}\right)$; nuclear response function
$\mathrm{C}\left[\tau_{-}\right]:=\operatorname{If}[\mathrm{r} 4[\tau] \geq 0,1,0] ;$
$\mathrm{sr4}\left[\tau_{-}\right]=\mathrm{r} 4[\tau] \star \mathrm{c}[\tau] ;$
$\mathbf{s}\left[\tau_{-}\right]=\int_{-\infty}^{\infty} \mathbf{g} 2[t] \star \operatorname{sr} 4[\tau] d t ;$


Plot $[\{s[\tau]\},\{\tau,-0.8,3\}$, PlotStyle $\rightarrow\{\operatorname{RGBColor}[0,0,1]\}$,
PlotRange $\rightarrow\{-0.05,1\}]$


