### ELLIPSOMETRIC STUDY OF THE SURFACE OF SIMPLE LIQUIDS

#### D. BEAGLEHOLE

Victoria University of Wellington, Wellington, New Zealand

Received 8 November 1979

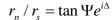
The coefficient of ellipticity  $\bar{\rho}$  has been measured for liquid argon between 85 and 120 K and carbon tetrachloride between 20°C and 40°C. The experimental technique which is ideally suited to this measurement is described in detail. From  $\bar{\rho}$  one is able to derive the thickness of the liquid-vapour interface. Theories of the liquid-vapour interface are reviewed and predictions compared with experiment. Theoretical uncertainties are emphasised.

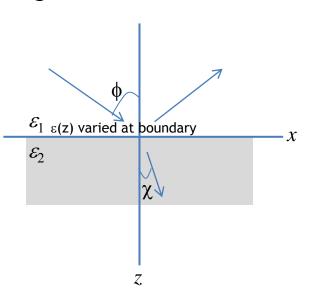
$$\frac{-}{\rho} = i \frac{\pi}{\lambda} \frac{\sqrt{\varepsilon_1 + \varepsilon_2}}{\varepsilon_1 - \varepsilon_2} \cdot \int \frac{(\varepsilon - \varepsilon_1)(\varepsilon - \varepsilon_2)}{\varepsilon} dz$$

 $\frac{\varepsilon_1)(\varepsilon - \varepsilon_2)}{\varepsilon} dz$  Coefficient of Ellipticity

1

$$\left\langle \xi_{w}^{2}\right\rangle =\frac{k_{B}T}{2\pi\sigma}\ln\frac{k_{\max}}{k_{\min}}$$


Surface Wave Excitation Theory


(the mean square displacement of the surface due to

(the mean square displacement of the surface due to excitation)

Seok, Sangjun -150CT2010-

# Background - coefficient of ellipticity





Incidence light is plane-polarized at 45° and the Brewster angle

#### Snell's law

$$\sqrt{\varepsilon_1}\sin\phi = \sqrt{\varepsilon_2}\sin\chi$$

#### For from this it follows that

$$\varepsilon_1 \cos^2 \phi - \varepsilon_2 \cos^2 \chi = \varepsilon_1 - \varepsilon_2$$

$$\varepsilon_2 \cos^2 \phi - \varepsilon_1 \cos^2 \chi = \frac{\varepsilon_1 - \varepsilon_2}{\varepsilon_2} (\varepsilon_1 \sin^2 \phi - \varepsilon_2 \cos^2 \phi)$$

In plane wave

$$u = R_{s,p} \cos[(k \cdot r - \omega t) + \delta]$$

u is the part of the complex quantity

$$u = R_{s,p} e^{i[(k \cdot r - \omega t) + \delta]}$$

### Writing now

 $u=R_{s,p}e^{i\delta}=\mathrm{R}_{\mathrm{S.P}}$  Proportional to the thickness "l"

I will be replaced by the complex amplitudes

$$\frac{R_{P}}{E_{P}} = \frac{\cos\phi\sqrt{\varepsilon_{2}} - \cos\chi\sqrt{\varepsilon_{1}}}{\cos\phi\sqrt{\varepsilon_{2}} + \cos\chi\sqrt{\varepsilon_{1}}} \left\{ I + i\frac{4\pi}{\lambda}\cos\phi\sqrt{\varepsilon_{1}} \frac{-p\cos^{2}\chi - l\varepsilon_{2}^{2}\sin^{2}\chi}{\varepsilon_{2}\cos^{2}\phi - \varepsilon_{1}\cos^{2}\chi} \right\} \dots 1$$

$$\frac{R_{s}}{E_{s}} = \frac{\cos\phi\sqrt{\varepsilon_{1}} - \cos\chi\sqrt{\varepsilon_{2}}}{\cos\phi\sqrt{\varepsilon_{1}} + \cos\chi\sqrt{\varepsilon_{2}}} \left\{ I + i\frac{4\pi}{\lambda}\cos\phi\sqrt{\varepsilon_{1}} \frac{l\varepsilon_{2} - p}{\varepsilon_{1}\cos^{2}\phi - \varepsilon_{2}\cos^{2}\chi} \right\} ...2$$

$$\frac{R_{P}}{R_{S}} = -\frac{\cos(\phi + \chi)}{\cos(\phi - \chi)} \left\{ I + i \frac{4\pi}{\lambda} \frac{\varepsilon_{2} \sqrt{\varepsilon_{1}}}{\varepsilon_{1} - \varepsilon_{2}} \cdot \frac{\cos\phi \sin^{2}\phi}{\varepsilon_{1} \sin^{2}\phi - \varepsilon_{2} \cos^{2}\phi} \eta \right\}$$

$$\eta = p - l(\varepsilon_1 + \varepsilon_2) + q\varepsilon_1\varepsilon_2$$

At the Brewster angle

$$\frac{R_{P}}{R_{S}} = i \frac{\pi}{\lambda} \frac{\sqrt{\varepsilon_{1} + \varepsilon_{2}}}{\varepsilon_{1} - \varepsilon_{2}} \eta$$

## Background - coefficient of ellipticity

$$\frac{R_{P}}{R_{S}} = i \frac{\pi}{\lambda} \frac{\sqrt{\varepsilon_{1} + \varepsilon_{2}}}{\varepsilon_{1} - \varepsilon_{2}} \eta \qquad \eta = p - l(\varepsilon_{1} + \varepsilon_{2}) + q\varepsilon_{1}\varepsilon_{2} \qquad \int_{1}^{2} dz = l, \int_{1}^{2} \varepsilon dz = p, \int_{1}^{2} \frac{1}{\varepsilon} dz = q$$

$$R_{P} = R_{p} \cdot e^{i\delta_{p}}, R_{P} = R_{s} \cdot e^{i\delta_{s}}$$
  $\frac{R_{P}}{R_{S}} = \frac{R_{P}}{R_{S}} e^{i(\delta_{p} - \delta_{s})} = \rho \cdot e^{i\Delta}$ 

 $\rho$  is the amplitudes and  $\Delta$  the difference in phase of the two components.

$$-\frac{1}{\rho} = i\frac{\pi}{\lambda} \frac{\sqrt{\varepsilon_1 + \varepsilon_2}}{\varepsilon_1 - \varepsilon_2} \eta, \ \Delta = \pi/2$$

$$\frac{-}{\rho} = i \frac{\pi}{\lambda} \frac{\sqrt{\varepsilon_1 + \varepsilon_2}}{\varepsilon - \varepsilon} \cdot \int \frac{(\varepsilon - \varepsilon_1)(\varepsilon - \varepsilon_2)}{\varepsilon} dz$$
 Coefficient of ellipticity 
$$\frac{-}{\rho_{21}} = -\frac{-}{\rho_{12}}$$

# Ellipsometry techniques

If the angle of incidence is set to  $\theta_B$  when  $\Delta=\pi/2$  (by adjusting  $\theta$  until Re(r)=0) then includes residual static phase shift has only a small effect on Im(r)

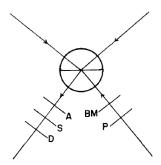



Fig. 1. The optical arrangement. Light beams reflected from the liquid—vapour and vapour—liquid surfaces are shown. P Polariser, BM birefringence modulator; A analyser; S horizontal slit; D detector.

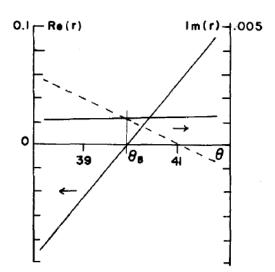



Fig. 2. Calculated  $\theta$  variation of  $r_{12}$  for a uniform film ( $\epsilon$  = 1.22, t = 15 A) on a bulk medium ( $\epsilon_2$  = 1.5). The dashed line shows Im(r) when a stray  $\Delta_1$  of 0.02 rad is present. The Re(r) is not affected on this scale.

### Results - Carbon tetrachloride

Table I Summary of data for carbon tetrachloride

| Constar                                                                                    | its d             | = 5.16 Å                                                                       | (45% pac                        | king f                    | raction)   |                                |             |                                 |                                                                          |                       |                                                            |                                         |                        |
|--------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------|---------------------------------|---------------------------|------------|--------------------------------|-------------|---------------------------------|--------------------------------------------------------------------------|-----------------------|------------------------------------------------------------|-----------------------------------------|------------------------|
|                                                                                            |                   | σ<br>(erg                                                                      | /cm <sup>2</sup> ) <sup>a</sup> | $\epsilon_1^{\mathrm{b}}$ | )          | $\epsilon_2^{b}$               |             | $\tilde{\rho} \times 10^4/\eta$ |                                                                          | $\eta/t(F)$ $A^{-1}$  | $\eta/t$ (erg A <sup>-1</sup> )                            | η/k <sub>max</sub><br>(Å <sup>c</sup> ) |                        |
|                                                                                            | 8°C<br>10°C       | 27<br>24                                                                       |                                 |                           | 011<br>017 | 2.132<br>2.102                 |             | -7.77<br>-7.95                  |                                                                          | 0.194<br>0.186        | -0.188<br>-0.180                                           | -1.88<br>-2.15                          |                        |
| Experin                                                                                    | nent              |                                                                                |                                 |                           |            |                                |             |                                 | from the                                                                 |                       | surface exci                                               | tation theory                           | $k_{\rm max} = 2\pi/t$ |
|                                                                                            | ₽ <sub>12</sub> × | 104                                                                            | ₽ <sub>21</sub> ×               | 10 <sup>4</sup>           | א קו × 10  | 0 <sup>4</sup> 1 <sub>av</sub> | t(F)<br>(Å) | t(Erf)<br>(A)                   | k <sub>max</sub><br>(Å)-1                                                | t <sub>м</sub><br>(Å) |                                                            |                                         |                        |
| 18°C                                                                                       | 11.8 ±            | 0.3                                                                            | -12.9 ±                         | 0.3                       | 12.3 ±     | 0.3                            | 8.2         | 8.5                             | 0.85                                                                     | 7.4                   | $\bar{\rho}_{21}(40^{\circ}\text{C})/\bar{\rho}_{21}(1$    | 8°C) = 1.10 ± 0.04                      |                        |
| Other v                                                                                    | vork              |                                                                                |                                 |                           |            |                                |             |                                 |                                                                          |                       | $\frac{\overline{\rho}_{21}}{\overline{\rho}_{12}} = 1.09$ | $3 \pm 0.05$ at 18                      | ,<br>C                 |
| Referen                                                                                    | nce               | ⊅ <sub>12</sub> ×                                                              | 104                             | T°C                       |            |                                |             |                                 |                                                                          |                       | This differe                                               | nce points to                           | an inadequacy          |
| 3 8.4<br>4 12.6 $\pm \frac{1}{2}$<br>5 10.5 $\pm \frac{1}{2}$<br>6 17.8 $\pm 1\frac{1}{2}$ |                   | Room temperature 12½ 15-18 no T dependence to 140°C 20, p rising to 26 at 40°C |                                 |                           |            |                                |             |                                 | This difference points to an inadec<br>of the assumption of the Drude mo |                       |                                                            |                                         |                        |

Space averaged density profile (error fn form)

$$\rho_{\rm Erf}(z) = \frac{\rho_l + \rho_v}{2} + \frac{\rho_l - \rho_v}{2} \, {\rm Erf}\left(\frac{z}{\sqrt{2} \xi_{\rm rms}}\right).$$

Fermi profile 
$$\eta(F) = (\epsilon_2 - \epsilon_1) \ln \frac{\epsilon_1}{\epsilon_2} \delta$$

a International Critical Tables, vol. 4, p. 447.
 b Interpolated from International Critical Tables, vol. 7, p. 12.

<sup>&</sup>lt;sup>c</sup> Using σ experimental.

# Results - Liquid argon

The reservoir was cooled to 77 K using liquid nitrogen

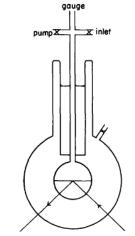



Fig. 3. The pyrex glass cell used for the liquid argon studies.

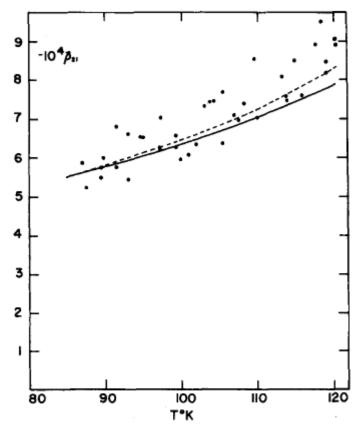



Fig. 4.  $p_{21}$  measured for liquid argon in 3 warming cycles between 85 K and 120 K. The full line shows the variation of p predicted by the surface wave excitation theory with  $k_{\min} = 2\pi/\lambda$ ,  $k_{\max} = 2\pi/t$ , using the experimental value of surface tension, while the dashed line holds  $k_{\max}$  constant.

The mean square displacement

$$\langle \xi_{\rm w}^2 \rangle = \frac{k_{\rm B}T}{2\pi\sigma} \ln \frac{k_{\rm max}}{k_{\rm min}}$$

### Results - Liquid argon

$$e(z) = 1 + \frac{n\alpha/\epsilon_0}{1 - n\alpha/3\epsilon_0}$$

From the Clausius-Mossotti

Table II Summary of liquid argon data

Density variation

|          |                        |                                       |                                        |                                 | 1                                        |                                          |                                          |                                           |                                       |                                                       |                                                                   |                                         |
|----------|------------------------|---------------------------------------|----------------------------------------|---------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|
| Const    | tants d                | 3.40 Å, 7                             | r <sub>c</sub> = 150.9                 | K _                             |                                          | Su                                       | rface                                    | tensio                                    | n                                     |                                                       |                                                                   |                                         |
| T<br>(K) | $\epsilon_1^{\ a}$     | 1 <sup>a</sup> ε2 <sup>a</sup> θΒ (°) |                                        | $\rho_l^b$ (g/cm <sup>3</sup> ) | ρ <sub>ν</sub> b<br>(g/cm <sup>3</sup> ) | σ <sup>c</sup><br>(erg/cm <sup>2</sup> ) |                                          | <b>ρ</b> /η                               |                                       | $\eta/t(F)$                                           | η/t(Erf)                                                          | η/k <sub>max</sub><br>(A <sup>2</sup> ) |
| 85       | 1.0015                 | 1.5147                                | 39.11                                  | 1.402                           | 0.0046                                   | 13.12                                    |                                          | $-1.535 \times 10^{-3}$                   |                                       | -0.0483                                               | -0.0467                                                           | -0.281                                  |
| 90       | 1.0025                 | 1.5026                                | 39.24                                  | 1.374                           | 0.0080                                   | 11.86                                    |                                          | 1.571                                     |                                       | 0.0461                                                | 0.0445                                                            | 0.314                                   |
| 100      | 1.0056                 | 1.4750                                | 39.55                                  | 1.309                           | 0.0180                                   | 9.42                                     |                                          | 1.668                                     |                                       | 0.0409                                                | 0.0395                                                            | 0.390                                   |
| 110      | 1.0103                 | 1.4450                                | 39.90                                  | 1.238                           | 0.0328                                   | 7.10                                     |                                          | 1.787                                     |                                       | 0.0354                                                | 0.0343                                                            | 0.493                                   |
| 120      | 1.0183                 | 1.4137                                | 40.32                                  | 1.160                           | 0.0580                                   | 4.95                                     |                                          | 1.961                                     |                                       | 0.0295                                                | 0.0285                                                            | 0.645                                   |
| Expe     | riments                |                                       |                                        |                                 | $\eta(F) = (\epsilon$                    | $\epsilon_2 - \epsilon_1$ ) h            | $n \frac{\epsilon_1}{\epsilon_2} \delta$ | $ \rho_{\text{Erf}}(z) = \frac{\rho}{1} $ | $\frac{l+\rho_v}{2}+\frac{\rho_l}{2}$ | $\frac{1-\rho_{v}}{2}$ Erf $\left(\frac{1}{2}\right)$ | $\frac{z}{\sqrt{2}\xi_{\text{rms}}}$ ). $\overline{k}_{\text{n}}$ | $\frac{1}{1} = 2\pi / t$                |
| T        | -> <sub>21</sub> ×     | 104                                   |                                        | -η                              |                                          | t(F)                                     | -2 -                                     | t(Etf)                                    |                                       | kmax                                                  |                                                                   | t <sub>m</sub>                          |
| (K)      | e                      | f                                     |                                        | (A)                             |                                          | (A)                                      |                                          | (A)                                       |                                       | (A-1)                                                 |                                                                   | (Å)                                     |
| 85       | 4.7 ± 0.               | .4 (5.4                               | ± 0.4)                                 | 0.306                           | (0.352)                                  | 6.33                                     | (7.30)                                   | 6.55                                      | (7.54)                                | 1.09                                                  | (1.25)                                                            | 5.8 (5.0)                               |
| 90       |                        | 5.7 ± 0.4                             |                                        |                                 | 0.363                                    |                                          | 7.9                                      |                                           | 8.2                                   |                                                       | 1.16                                                              | 5.4                                     |
| 100      |                        | 6.5 ± 0.4                             |                                        |                                 | 0.390                                    |                                          | 9.5                                      |                                           | 9.9                                   |                                                       | 1.00                                                              |                                         |
| 110      |                        | 7.5                                   | ± 0.4                                  |                                 | 0.420                                    |                                          | 11.9                                     | 12.2                                      |                                       |                                                       | 0.85                                                              |                                         |
| 120      |                        | 8.8                                   | ± 0.6                                  |                                 | 0.450                                    | 15.2 15.8                                |                                          |                                           | 15.8                                  |                                                       | 0.70                                                              | 9.0                                     |
| Predic   | ctions                 |                                       | $\sigma_0 = \sigma$                    | $a + \frac{3}{16\pi} k_{\rm B}$ | Tk2max.                                  | Tempera                                  | ature var                                | riation                                   |                                       |                                                       |                                                                   |                                         |
| T<br>(K) | tw <sup>g</sup><br>(A) | twh<br>(A)                            | σ <sub>0</sub><br>(erg/cm <sup>2</sup> | $t_{wo}^{i}$                    | t <sub>i</sub> <sup>j</sup><br>(A)       | $t_m(T)/t$                               | <sub>m</sub> (90) <sup>k</sup>           | t(Erf, 7                                  | /)/t(Erf, 9                           | 90) <sup>k</sup> t <sub>w</sub>                       | (T)/t <sub>w</sub> (90)                                           | l(T)/l(90)                              |
| 85       | 7.64                   | 7.59                                  | 20.52                                  | 6.22                            | 4.3                                      | 0.93                                     |                                          | 0.92                                      |                                       | 0.9                                                   | 93                                                                | 0.95                                    |
| 90       | 8.22                   | 8.22                                  | 18.78                                  | 6.67                            |                                          | 1                                        |                                          | 1                                         | 1                                     |                                                       | 1                                                                 |                                         |
| 100      | 9.62                   | 9.72                                  | 15.38                                  | 7.70                            | 6.2                                      | 1.17                                     |                                          | 1.21                                      |                                       | 1.17                                                  |                                                                   | 1.12                                    |
| 110      | 11.47                  | 11.74                                 | 11.87                                  | 9.09                            | 8.1                                      | 1.37                                     |                                          | 1.49                                      |                                       | 1.39                                                  |                                                                   | 1.29                                    |
| 120      | 14.12                  | 14.69                                 | 8.57                                   | 11.03                           | 11.3                                     | 1.67                                     |                                          | 1.93                                      |                                       | 1.7                                                   | 72                                                                | 1.54                                    |

<sup>&</sup>lt;sup>a</sup> Extrapolated from the data of Sinnock and Smith, ref. 29 using the Clausius-Mossotti expression. <sup>b</sup> Ref. 30. <sup>c</sup> Ref. 31. <sup>d</sup> Using  $\sigma$  experimental. <sup>e</sup> Average of 3 samples. <sup>f</sup> Average of 3 warming cycles, value in parentheses extrapolated to 85 K. <sup>g</sup>  $k_{\min} = 2\pi/\lambda$ ,  $k_{\max} = 2\pi/t$ ,  $\sigma$  experimental. <sup>h</sup>  $k_{\min} = 2\pi/\lambda$ ,  $k_{\max}$  constant =  $2\pi/t$ (90),  $\sigma$  experimental. <sup>i</sup>  $k_{\min} = 2\pi/\lambda$ ,  $k_{\max} = 2\pi/t$ ,  $\sigma_0$  bare. <sup>j</sup>  $t_1^2 = t^2 (\text{Erf}) - t_{\text{w0}}^2$ . Experimental values.