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We report on the variation of the dissociation of a Langmuir monolayer of arachidic acid at the air/water
interface as a function of the subphase pH and for several cations (Cd?*, Ca?*, Mg?", and Na') with the
help of the polarization-modulated infrared reflection—absorption spectroscopy (PM-IRRAS) method. The
infrared spectra give access to the relative concentration of acid and salt molecules and allow us to determine
the influence of the subphase pH on the acid dissociation reaction for each cation. It is shown that Na*
obeys the purely electrostatic Gouy—Chapman theory quite well, whereas the behavior of Mg?*, and even
more so that of Ca?t and Cd*", requires the introduction of some complexation constant to be understood.‘




“*Background study
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Sea spray aerosols (SSA) are known to have an organic coating that is mainly composed of fatty acids.
In this study, the effect of pH and salt on the stability and organization of a palmitic acid (PA) monolayer
is investigated by surface vibrational spectroscopy and molecular dynamics simulations. Results indicate
that alkyl chain packing becomes more disordered as the carboxylic headgroup becomes deprotonated.
This is associated with packing mismatch of charged and neutral species as charged headgroups
penetrate deeper into the solution phase. At pH 10.7, when the monolayer is ~99% deprotonated,
palmitate (PA~) molecules desorb and solubilize into the bulk solution where there is spectroscopic
evidence for aggregate formation. Yet, addition of 100 mM NaCl to the bulk solution is found to drive

Received 9th January 2017, PA~™ molecules to the aqueous surface. Free energy calculations show that PA~ molecules become
Accepted 24th March 2017 stabilized within the interface with increasing NaCl concentration. Formation of contact —COO :Na*
DOI: 10.1039/c7cp00167¢ pairs alters the hydration state of PA™ headgroups, thus increasing the surface propensity. As salts

are highly concentrated in SSA, these results suggest that deprotonated fatty acids may be found at the
rsc.li/pccp air—aqueous interface of aerosol particles due to sea salt’s role in surface stabilization.




“*Motivation of previous study

have been investigated by a multitude of techniques.””* Surpris-

ingly, studies on the influence of pH on the surface properties of
fatty acids are sparse in literature,””” and the majority of these
studies focus on fatty acids with a chain length of 20 or more
carbons.””™” Solubility of fatty acids increase with decreasing
chain length, and as most fatty acids in SSA have chain lengths
in the range of C,,~C,s,>”?° it is likely that stability and surface
activity of these shorter chain fatty acids decrease upon dissocia-
tion of the carboxylic acid proton.




**SFG results
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Fig. 5 VSFG spectra of the CD stretching region of ds;-PA monolayers in the UC phase (20.5 A2 per molecule) on various pH solutions in (a and c) ssp
and (b and d) ppp polarizations.




**Infrared reflection-absorption spectroscopy (IRRAS) results
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Fig. 4 IRRAS spectra of the CD2 scissoring region for d31-PA monolayers on various pH solutions in
(a) TC phase (24 A2 per molecule) and (b) UCphase (20.5 A2 per molecule).




“*My current work
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“*Experimental section

dDeuterated arachidic acid(CENSaclay, France) was dissolved in chloroform at a
concentration of 5 x 103 M and spread onto a subphase of ultrapure water (MilliQ from
Millipore) containing either CaCl,, CdCl,, MgCl,, or NaCl.

The pH of the subphase was adjusted by addition of HCI, NaOH, CaO, or MgO and was
directly checked in situ during spectrum acquisition. The concentrations of the subphase
counterions (3.1 x103M CaCl,, 3.5 x 10 M CdCl,, 3 x 10-* M MgCl,, and 10> M
NaCl) have been chosen to prevent a significant variation of metallic cation
concentration when the pH is increased.




“*Experimental setup

Polarization-modulated IRRAS (PM-IRRAS)
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Fic. 2. Schematic of the optical PM-IRRAS setup and of the two-
channel electronic processing.




d dAA with CdCl,
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Figure 1. Normalized PM-IRRAS spectra of a monolayer of deuterated arachidic acid spread onto a water subphase
containing 3.5 x10-*M CdCl, as a function of the subphase pH in the headgroups vibration range (a) and in the alkyl
chains vibration range (b).




d dAA with MgCl, and CaCl,
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Figure 2. Normalized PM-IRRAS spectra of a monolayer of
deuterated arachidic acid spread onto a water subphase
containing 3.1 x 107* M CaCl; as a function of the subphase

pH.
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Figure 3. Normalized PM-IRRAS spectra of a monolayer of
deuterated arachidic acid spread onto a water subphase
containing 3 x 1073 M MgCl, as a function of the subphase pH.




d dAA with NaCl

0.3
 Deprotonation is much more difficult to obtain

and a pH 10.8 is required to eliminate the acidic
form
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Figure 4. Normalized PM-IRRAS spectra of a monolayer of
deuterated arachidic acid spread onto a water subphase
containing 1072 M NaCl as a function of the subphase pH.




J Normalization (Integrated intensity at highest pH for v, COO-band
and the lowest pH for the C=0 band)
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“*Determine ApH (difference between pK, at the interface and pH, s ..irar 8t the subphase)

Introduction to pKa

/ ApH — pka o thalf __ neutral \
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Figure 6. Experimental values of the ionized fraction of
molecules as a function of the subphase pH for Cd*" (@), Ca?*
(a), Mg?+ (@), and Na* (#) and theoretical curves obtained
from the Gouy—Chapman equation (see text) for a single-
charged cation (dotted line) and for a double-charged cation
(dotted—dashed line). The experimental values have been
obtained from Figure 5.




