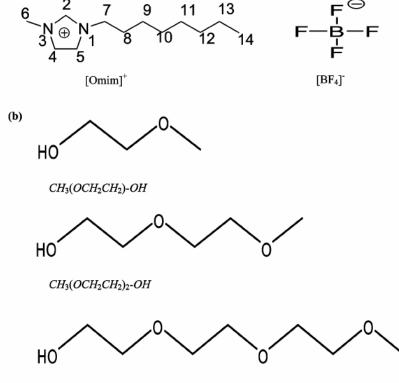
Fluorescence Behavior and Specific Interactions of an Ionic Liquid in Ethylene glycol derivatives

JPCB 112,4079 (2008)

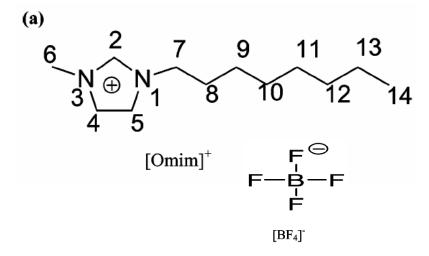
Tejwant Singh and Arvind Kumar

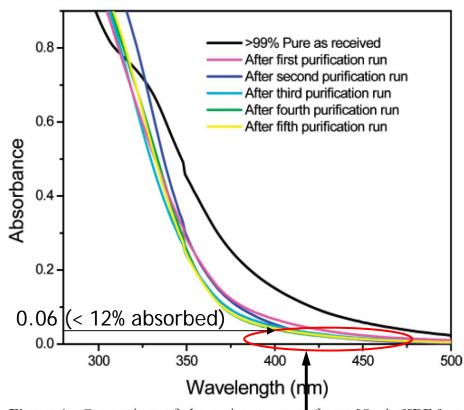

Introduction

In resent years,

- unique spatial heterogeneity from results (inherent polar/nonpolar segregation)
 - Experimental & computer simulation of pure ionic liquids (nanostructural organization in ionic liquids with various alkyl chain lengths)
- Water or organic solvent mixture are extensively studied by various techniques.
 (the exact information about the nature of interaction at molecular level)
- ¹H NMR and FT-IR measurements
 (the existence of aggregate-like structures of the IL in dilute region and comparatively stronger cation-anion interactions in the IL-rich region of the mixture)

Introduction

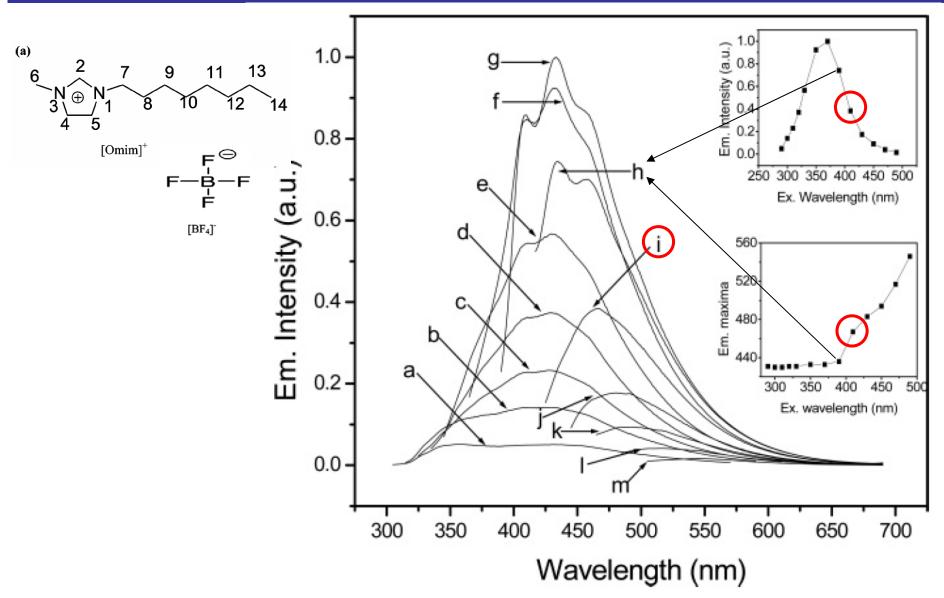

SCHEME 1: (a) Constituent Ions of the Ionic Liquid 1-Octyl-3-methylimidazolium Tetrafluoroborate; (b) Structure of the Organic Liquids

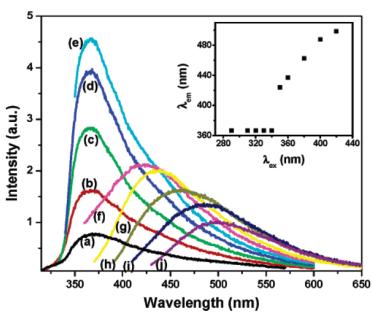


 $CH_3(OCH_2CH_2)_3-OH$

- Absorption (Cary 500, Varian)
 & Fluorescence (Fluorolog, Horiba Jobin Yvon)
- NMR (Bruker 500 and 200 MHz
 - standard : TMS in C₆D₆)
 - Chemical shift, (C-2, C-4,C-5, C-14 of ionic liquid) (-OH of glycol derivatives)
- FT-IR (Spectrum GX Series 49387)
 (BF₄- stretching of the IL in glycol derivatives)

$[OMIM][BF_4]$




Figure 1. Comparison of absorption spectra of neat [Omim][BF₄] as received and after repeated purification.

Long tail of absorption spectra

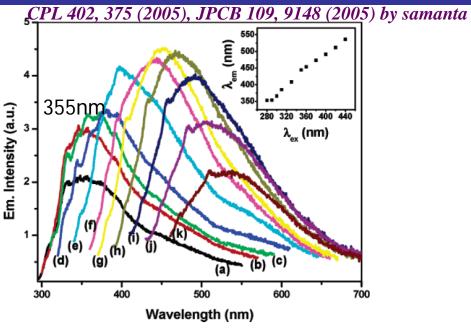
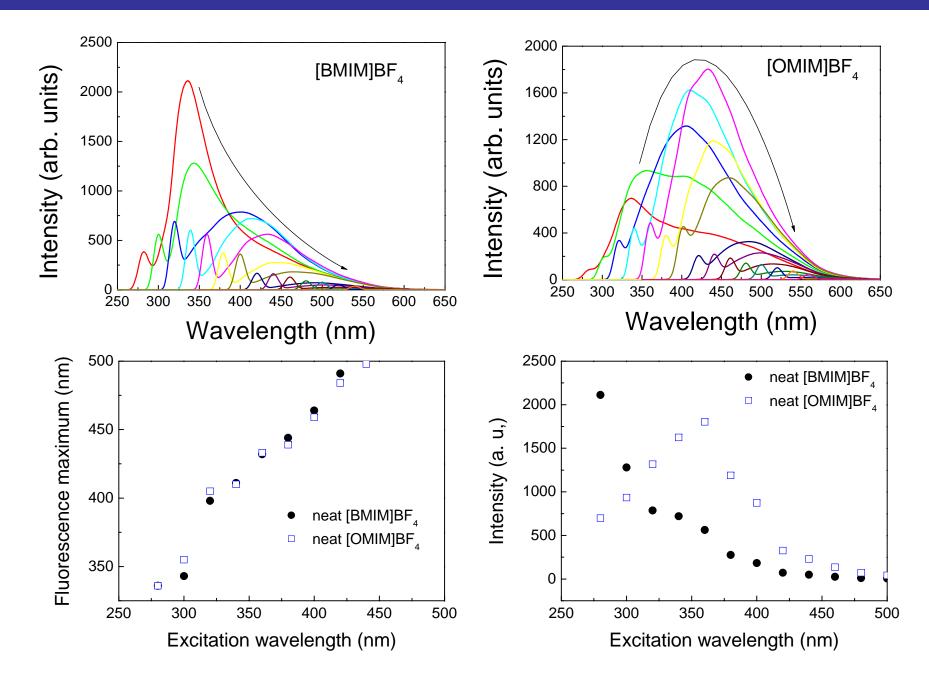

(Due to the Imidazolium moiety of ionic liquid and not due to the impurities)

Figure 2. Excitation-wavelength-dependent [λ_{exc} (nm) = 280–490 (a–m)] emission behavior of neat [Omim][BF₄].

Figure 3. Excitation wavelength-dependent emission behavior of neat [bmim][BF₄]. λ_{exc} (nm) = 290 (a), 310 (b), 320 (c), 330 (d) 340 (e), 350 (f), 360 (g), 380 (h), 400 (i), and 420 (j).

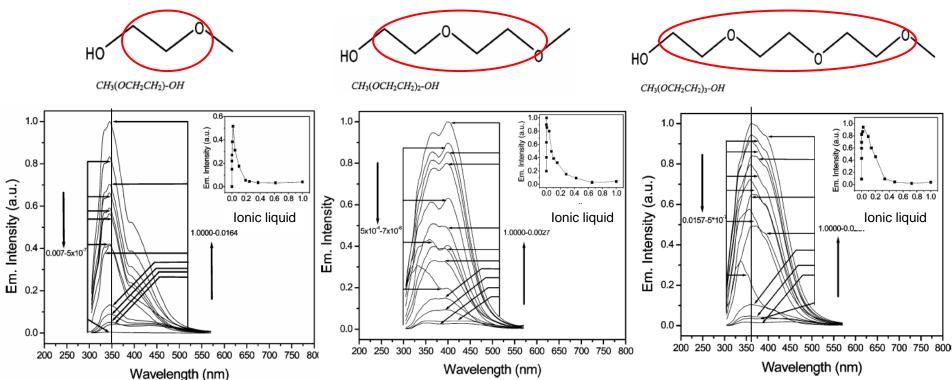

Figure 4. Excitation wavelength-dependent emission behavior of neat [emim][BF₄]. λ_{exc} (nm) = 280 (a), 290 (b), 300 (c), 310 (d), 330 (e), 350 (f), 360 (g), 380 (h), 400 (i), 420 (j), and 440 (k).

Red edge effect (excitation wavelength)

(a)
$$6 \xrightarrow{2} 7 \xrightarrow{9} 11 \xrightarrow{13} 13 \xrightarrow{X} \xrightarrow{N \oplus N_1} 8 \xrightarrow{10} 12 \xrightarrow{14}$$

$$F = B = F \xrightarrow{[Omim]^+} F \xrightarrow{[BF_4]^-} F \xrightarrow{[BF_4$$

Higher viscosity of the longer alkyl chain IL or the associated structure with polar/nonpolar segregation



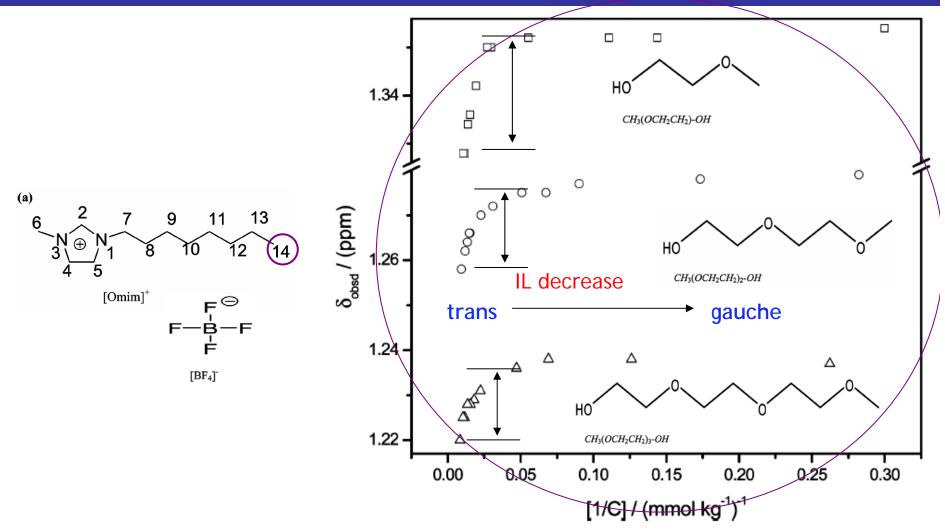
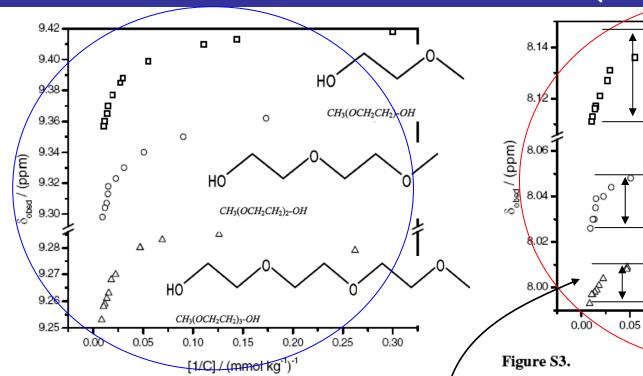

Figure 3. Emission spectra at an excitation wavelength of 290 nm as a function of the mole fraction of the ionic liquid in the mixtures {- $[Omim][BF_4] + CH_3(OCH_2CH_2) - OH$ }.

Figure 5. Emission spectra at an excitation wavelength of 290 nm as a function of the mole fraction of the ionic liquid in the mixtures $\{-[Omim][BF_4] + CH_3(OCH_2CH_2)_3 - OH\}$.

Excitation wavelength: 290nm


Blue shift (with increase of organic concentration) in the spectra

- intermolecular hydrogen bonding between [OMIM][BF₄] and glycol derivatives in the mixtures
- decrease in the viscosity of the medium
 (which makes the relaxation of the photo excited species more efficient)

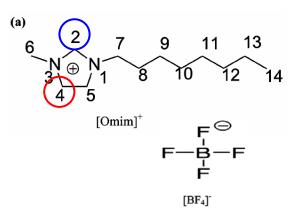


Figure 6. Variation of δ_{obsd} for the protons of the terminal methyl group of the imidazolium cation at C-14 against the reciprocal concentration of the IL in various binary mixtures in the IL-dilute region: (\Box) CH₃(OCH₂CH₂)-OH; (\bigcirc) CH₃(OCH₂CH₂) $_2-$ OH; and (\triangle) CH₃(OCH₂CH₂) $_3-$ OH.

Results & discussion (NMR)

Figure S2. Variation of δ_{obsd} for the protons of imidazolium cation at C-2 against the reciprocal concentration of the IL in various binary mixtures in IL dilute region: (\square) $CH_3(OCH_2CH_2)-OH$; (\circ) $CH_3(OCH_2CH_2)_2-OH$; and (\triangle) $CH_3(OCH_2CH_2)_3-OH$.

Figure S3. Variation of δ_{obsd} for the protons of imidazolium cation at C-4 against the reciprocal concentration of the IL in various binary mixtures in IL dilute region: (\square) $CH_3(OCH_2CH_2)-OH$; (\circ) $CH_3(OCH_2CH_2)_2-OH$; and (Δ) $CH_3(OCH_2CH_2)_3-OH$.

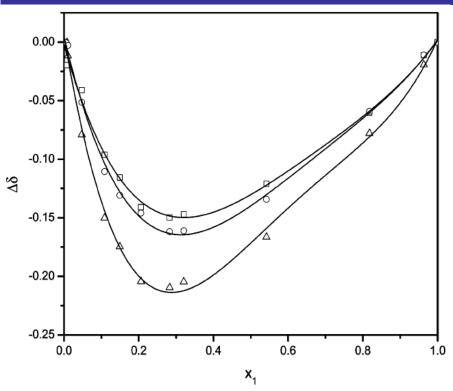
Δ

0.10

0.15

[1/C] / (mmol kg⁻¹)⁻¹

0.20


0.30

IL decrease

Ring stacking through π - π interaction

Aggregated structures decreases with -OC₂H₄ group

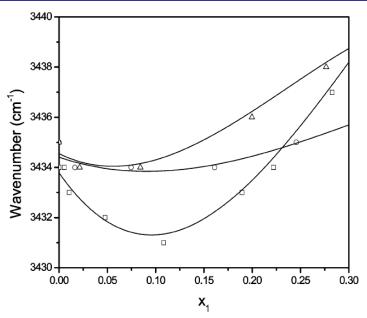
Results & discussion (NMR)

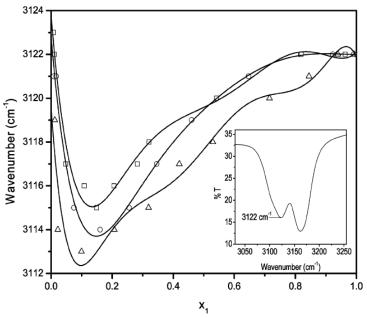
Figure 7. Comparison of the deviation in chemical shift $\Delta\delta$ for various protons of the IL in CH₃(OCH₂CH₂)-OH: (\Box) terminal methyl protons at C-14; (\bigcirc) ring protons at C-4,5; and (\triangle) ring proton at C-2.



Figure 8. Comparison of the deviation in chemical shift Δδ for the ring proton at C-2 of the IL in different glycol derivatives:
(□) CH₃(OCH₂ CH₂)−OH;
(O) CH₃(OCH₂CH₂)₂−OH;
and (Δ) CH₃(OCH₂CH₂)₃−OH.

Ring proton at C2


Ring proton at C-4,5


Ring proton at C-14

- •Hydrogen-bonded interactions decrease with -OC₂H₄ group
- Intramolecular hydrogen bonding increases with nunmber of oxygen atoms in the ethylene glycol derivative
- Reduces the number of possible intermolecular H-bonds

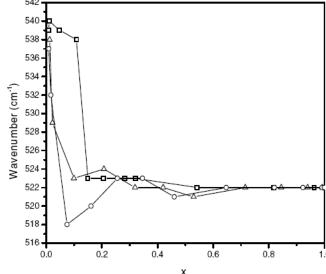

Results & discussion (FT-IR)

Figure 9. Comparison of the -OH stretching of the different glycol derivatives in the IL-dilute region of the mixtures: (\square) CH₃(OCH₂-CH₂)-OH; (\bigcirc) CH₃(OCH₂CH₂)-OH; and (\bigcirc) CH₃(OCH₂CH₂)-OH. Solid lines represent the polynomial fits to the experimental data.

Figure 10. Comparison of the H-C-2 stretching of the IL in different glycol derivatives: (\square) CH₃(OCH₂CH₂)-OH; (\bigcirc) CH₃(OCH₂CH₂)₂-OH; and (\triangle) CH₃(OCH₂CH₂)₃-OH.

Figure S7. Comparison of the BF4 stretching of the 1L in different glycol derivatives: (\Box) $CH_3(OCH_2CH_2)-OH$; (\circ) $CH_3(OCH_2CH_2)_2-OH$; and (Δ) $CH_3(OCH_2CH_2)_3-OH$.

Conclusions

[OMIM][BF4]+ethylene glycol derivatives

: steady-state fluorescence, ¹H NMR, and FT-IR