Ultrafast Vibrational Dynamics
at Water Interfaces

John A. McGuire™ and Y. Ron Shent

Time-resolved sum-frequency vibrational spectroscopy permits the study of hitherto neglected
ultrafast vibrational dynamics of neat water interfaces. Measurements on interfacial bonded OH
stretch modes revealed relaxation behavior on sub-picosecond time scales in close resemblance to
that of bulk water. Vibrational exdtation is followed by spectral diffusion, vibrational relaxation,
and thermalization in the hydrogen-bonding network. Dephasing of the excitation occurs in <100
femtoseconds. Population relaxation of the dangling OH stretch was found to have a time constant
of 1.3 picoseconds, the same as that for exctation transfer between hydrogen-bonded and
unbonded OH stretches of water molecules surrounded by acetone.
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Interfacial Water _

> Free (dangling) OH bond

Disordered tetrahedral structure
(icelike and liguidlike OH bond)

JBE ‘Dashed line: SFG on air /water interface

‘Dotted line: SFG on alcohol /water interface
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‘Solid line: IR absorption spectra of ice
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Experimental system

From Ti—Sapphire Laser and its

Sk pump(cm Tw,) IR pump optical parametric amplifier

SF probe(w; +w,) Vis(w,)

IR probe(w,) Fused silica prism (coated

" or uncoated by OTS)
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1) Free OH bonding
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Recovery time of free OH vibrational mode
(Population relaxation) ~ 1.3ps

Dephasing time of free OH vibrational mode ~ 300fs



2) Bound OH bonding _
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Spectral hole burning (depletion of SF probe signal) showed up

Over shot in high frequency and under shot in low frequency region

Due to thermalization of interfacial water (exhale heat) — lasted over 50ps



3) Detailed experiment
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4) Analysis

S()=1-(1-58))e """ L ASA—e 71"

Tv: vibrational relaxation time constant / Tt: thermalization time constant

S,: SF probe signal at t=100fs / AS: SF probe signal difference by thermalization (~2ps)

From model fitting —Tv ~ 300fs / Tt ~700fs

Near 3300cm™!, 1- S, is much greater than AS means that
vibrational relaxation is dominant process

On left (low frequency), right (high frequency) side of
spectrum , AS 1s much greater than 1- S, means that
thermalization 1s dominant



Summary & next step

1) Dynamics of interfacial water 1s investigated by time-
resolved SFVS.

2) Vibrational relaxation time of Free OH 1s ~1.3ps and 1s
longer than bounded OH.

3) Thermalization and vibraitonal relaxation time were
measured.



