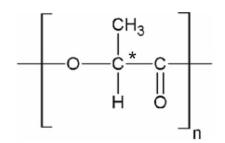
Surface and bulk structure of poly-(lactic acid) films studied by vibrational sum frequency generation spectroscopy

C. Magnus Johnson, Albert B. Sugiharto, Sylvie Roke

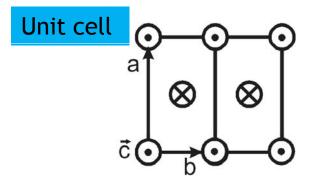
Max-Planck Institute for Metals Research, 70569 Stuttgart, Germany

Chemical Physics Letters 449 (2007) 191-195

- Biodegradable and biocompatible polymers
- Devices polymers for drug delivery and implants

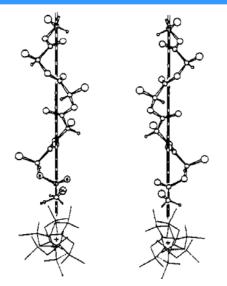


Applications of PLA :


- Bone fixation devices
- Blood vessel repair
- Medicine delivery systems

The structural formula of Poly-(lactic acid) (PLA)

structural formula

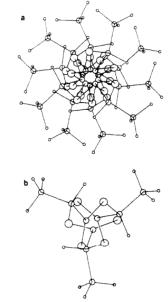
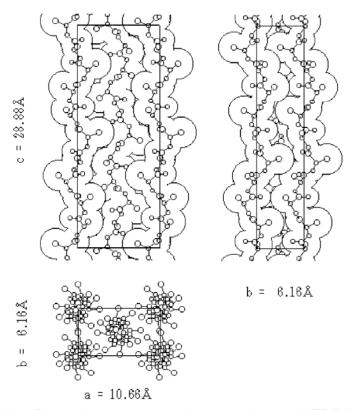
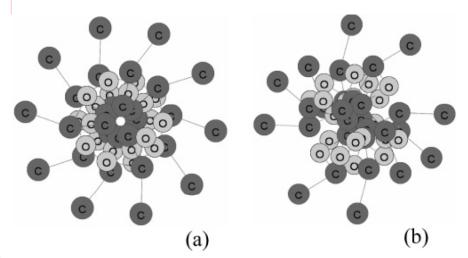

The central carbon atom constitutes a chiral center.

- The crosses (dots) indicate a helix directed into (out of) the plane of the paper.

- The axes of the unit cell are denoted by a, b, and c, where c is along the helical axis.

- Cell dimensions are a = 1.06, b = 0.61, and c = 2.88 nm (parallel to the c axis) Figure

Poly (L-lactide) Poly (D-lactide)

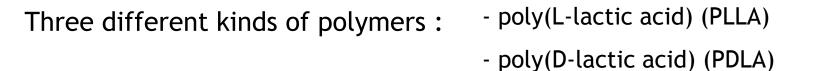

Figure 5. Projections perpendicular to the helical axis of a -10/3 helical conformation (a) and a -3/1 helical conformation (b).

Figure 5. Crystal structure of the α -form of PLLA. Upper left: *ac* projection; upper right: *bc* projection, lower: *ab* projection. In the *ac* and *bc* projections, chains are enveloped with van der Waals radii of the constituent atoms.

Figure 1. Two proposed forms of the α -crystals: (a) Aleman/Puiggali/ Lotz coordinates; (b) Sasaki/Asakura coordinates. Hydrogens are abbreviated to aid clarity.

- Racemic poly(DL-lactic acid) (PDLLA)

Spin coated condition: polymer powder + chloroform :2.5 wt% solution
on glass substrates at 3000 rpm for 1 min

films of thicknesses : ~0.8 μm (measured by ellipsometry)

Films :

- Enantiomeric amorphous films : melting the spin coated films at 190 °C
 - quenching in liquid nitrogen.
- Crystalline films: the spin coated films annealed at ~80 °C for 10 min.
- PDLLA and PLLA/PDLA films : only spin coated films

The SF Intensity:
$$I_{\rm SFG}(\omega) \propto \left| E_{\rm IR}(\omega) \sum_{n} \int_{-\infty}^{\infty} \chi^{(2)}(\omega') E_{\rm VIS}(\omega'-\omega) d\omega' \right|^2$$

$$\chi^{(2)}(\omega) = \chi_{\mathrm{NR}}^{(2)} + \sum_{n} \chi_{n}^{(2)}(\omega)$$
$$= A_{\mathrm{NR}} \mathrm{e}^{\mathrm{i}\Delta\phi} + \sum_{n} \frac{A_{n}}{(\omega - \omega_{0n}) + \mathrm{i}\Gamma_{\mathrm{n}}},$$

 E_{IR} : the envelope of the IR spectrum

 E_{VIS} the envelope of the visible spectrum

A_n : the amplitude

 ω : the IR frequency

 ω_{0n} : the peak centers

 Γ_n : the damping constants of the vibrational mode n.

 $\Delta {\it {\it p}}$: the relative phase difference between the resonant and the non-resonant fields

Laser system : 1 kHz broadband high power Ti:Sapphire laser

The IR pulses : centered around 3000 cm⁻¹ with a FWHM of 150 cm⁻¹, a pulse duration of 175 fs.

The visible pulses : centered at 800 nm and shaped to a FWHM of 5 cm⁻¹. Pulse energies : 10(IR) and 3 (vis) μ J near the sample Focus diameter : 0.75 mm.

The VSFG experiments were performed in a reflection geometry, with incoming angles of 60 $^{\circ}$ (IR) and 40 $^{\circ}$ C(vis) with respect to the surface normal.

Result

Transmission IR spectra in the C-H strecting region

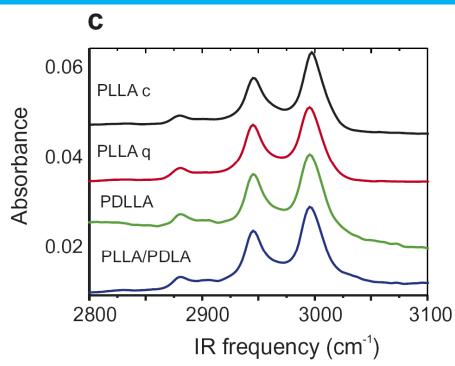


Fig. Transmission IR spectra from top to bottom of a crystalized PLLA film, a quenched (amorphous) PLLA film, a PDLLA film and a PDLA/PLLA film.

- the four IR spectra resemble each other closely, despite different configurations and properties of the different films.
- the difference in crystallinity is apparent,

this does not show from the spectra

- PLA: poly(L-lactic acid) (PLLA) poly(D-lactic acid (PDLA)
- PDLLA : The stereo-complexed polymer with randomly inserted D and L monomer units in a single chain is an amorphous polymer
- PDLA/PLLA : The stereo-complexed polymer built from a 1:1 solution of PLLA and PDLA chains

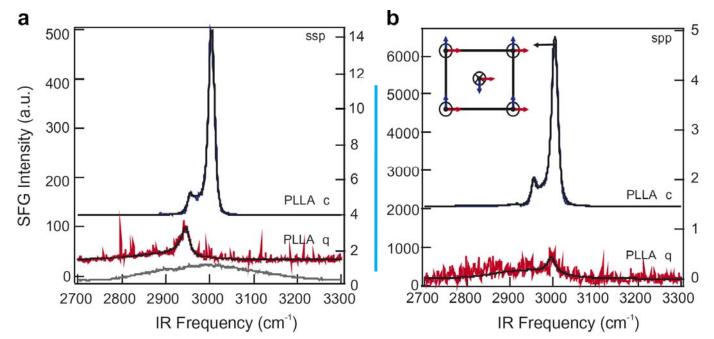


Fig. 2. VSFG spectra of (a) the surface (ssp), the bulk (b, spp), of an amorphous and a crystalline PLLA film. In (a) the (scaled) non-resonant spectrum with ppp polarization combination of a gold surface is also displayed. The left axis reflects the intensity of the crystalline film, while the right axis reflects the intensity of the quenched film. Data in all spectra are comparable in intensity. The spectra are offset for clarity. The inset in (b) illustrates how an anti-parallel arrangement may lead to amplification of a subset of normal modes along one of the crystalline axes.

quenched film : quenched film : one peak of the antisymmetric methyl a symmetric methyl stretch at 2947 cm⁻¹ stretch mode at 2997 cm⁻¹ $(\Delta \emptyset = 0; A_{2947} = 1.18 \pm 0.06; \Gamma = 12.0 \pm 0.8 \text{ cm}^{-1}),$ $(\Delta \emptyset = 0; A_{2997} = 1.3 \pm 0.16; \Gamma = 11.0 \pm 2.2 \text{ cm}^{-1})$ the anti-symmetric methyl stretch mode at 2997cm⁻¹ $(A_{2997} = 0.18 \pm 0.04; \Gamma = 13.0 \pm 2.6 \text{ cm}^{-1})$ crystalline film: crystalline PLLA film : 2954 cm⁻¹($\Delta \phi$ = 100; A₂₉₅₅= 32.6 ± 1.3; Γ = 6.4 ±0.3 cm⁻¹), 2954 cm⁻¹($\Delta \phi$ =100; A₂₉₅₄ = 8.9 ± 0.5; Γ = 7.0 ± 0.4cm⁻¹), 2997 cm⁻¹(A₂₉₉₇ =16.6 \pm 0.3; Γ = 15.0 \pm 0.3cm⁻¹), 2965 cm⁻¹($A_{2965} = 46.2 \pm 10.1$; $\Gamma = 14.0 \pm 3.5$ cm⁻¹), 2965 cm⁻¹(A_{2965} =14.4 ± 2.8; Γ = 13.0 ±3.9cm⁻¹), 2997 cm⁻¹($A_{2007} = 36.1 \pm 1.6$; $\Gamma = 13.0 \pm 0.26$ cm⁻¹), 3007 cm⁻¹ (A₃₀₀₇ =22.5 \pm 4.5; Γ = 8.7 \pm 0.4cm⁻¹). 3007 cm⁻¹(A_{3007} = 75.6 ± 1.7; Γ = 9.0 ± 0.5 cm⁻¹)

In crystalline structure of PLLA

- PLLA form : The $\alpha\text{-}$ crystalline structure
- PLLA chain forms : left-handed helix with C_{10} symmetry
 - ightarrow chirality in the whole chain
- Unit cell chain form : chains are packed in a pseudo-orthorombic
 - anti-parallel arrangement with a unit cell containing two helices

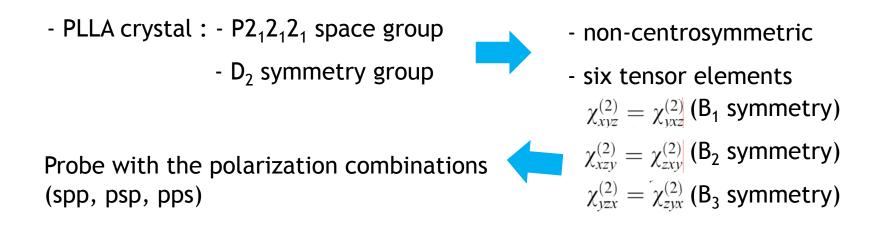


Table 2. Group Symmetry Species Assignment to PLA α -Crystal Vibrations, from Polarized Infrared Spectra on Oriented Films and 2D Spherulites

	2D Spherulites					
C ₁₀ , A polarzd	C10, E1 depolarzd	D ₂ , A polarzd	D ₂ , B ₁ depolarzd	D ₂ , B ₂ depolarzd	D ₂ , B ₃ depolarzd	
2997	2996	2997	\bigcirc	3006 2999 2965	3015 2997	For the D_2 crystal of PLLA,
2945	2946	2947 2882		2947	2947 2883	- B_1 modes : no infrared in the C-H stretch region
1776		1775	1777		1769	
1757	1763	1764		1763	1759	
				1750	1750	
1457	1456		1457		1456	- either B_2 or B_3 modes : exist 2947 and 2997 cm ⁻¹
				1447	1443	
1385	1386			1387	1387	(they have components along both the <i>a</i> and <i>b</i> axes)
				1382		(they have components along both the a and b axes)
			1371			
	1359			1360	1360	
1369	1305			1303	1306	
			1293		1294	- B ₂ modes: only exist 3007 cm ⁻¹
1294	1266			1223	1214	
1267	1216			1212	1207	(with a changing dipole moment in the <i>b</i> direction)
1185		1181		1201		(with a changing dipote moment in the <i>D</i> direction)
1182					1141	
	1135			1136	1135	
1129		1128		1108		
	1094		1090		1094	
1090	1071		1070	1054	1071	
1090	1047	1042		1001	1015	
1044	923	1042	958			
958	125		200	In am	alituda	
872	872	874	872	iii aiii	plitude,	
072	757	874	072			
	151	736	726			
727		730	736 712	the st	rongest	ssp spectrum $\approx 14 \times$ the weak sps spectrum(not showen)
737		/11	/12		5-5-5	
712	691	412				
		401				▼
		401		hav	ic ic prof	for optially oriented parallel to the surface permal
		299			is is piel	ferentially oriented parallel to the surface normal
					-	
		205				

- c axis are preferentially oriented in the surface plane.

Macromolecules 39 (2006) 3337

166 158

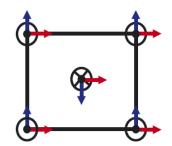
In the amorphous film of PLLA

the observed spp signal can

either indicate a small amount of crystallinity or

indicate the allowed chiral elements for isotropic bulk material.

if present in the amorphous film


Support the magnitude of the chiral elements

The presence of two anti-parallel chiral chains within one unit cell leads to a double effect in the SFG spectra.

-First, the anti-parallel arrangement of two chiral chains enhances the nonlinear optical signal.

- This cancels the polarization in two directions.

-The direction along the rotation axis is not inverted however, so that large intensities can be measured in that direction.

-Second, two chains in one unit cell impose additional site symmetry which causes the modes to split into two modes.

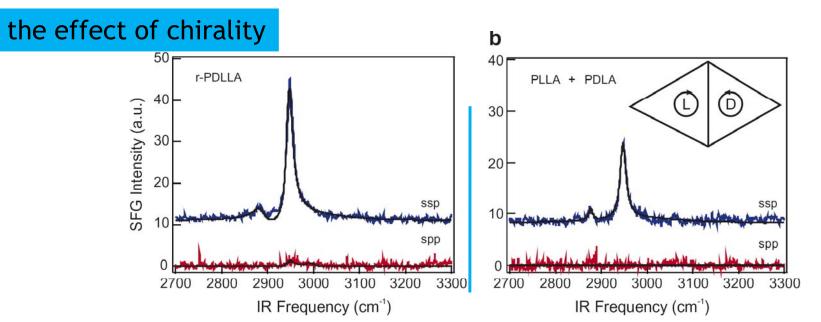


Fig. 3. VSFG spectra of PDLLA films (a) and films composed of PLLA and PDLA (b) taken with ssp and spp polarization. The IR profile is shown in Fig. 2. The black lines are fits to the spectra. The inset in (b) shows an illustration of the crystalline form of the PLLA:PDLA stereo-complex with two chains in a triclinic unit cell.

The PDLLA ssp spectrum modes: stere 2888 cm⁻¹($\Delta \phi = 0$; A₂₈₈₈=4.0 \pm 0.2; Γ =15.0 \pm 0.9 cm⁻¹); 2888 2947 cm⁻¹ (A₂₉₄₇ = 5.6 \pm 0.2; Γ = 8.5 \pm 0.6 cm⁻¹), 2947

The PDLLA spp spectrum shows a very weak signal.

A film is racemically composed, the spp signal most likely finds its origin in a tiny amount of 'ordered' monomers that may be formed in the polymerization process. stereo-complex contain peaks : 2888 cm⁻¹($\Delta \emptyset$ = 0; A₂₈₈₈=0.7±0.07; Γ =5.0±0.9 cm⁻¹) , 2947 cm⁻¹(A₂₉₄₇ = 2.5 ± 0.1; C = 7.9 ± 0.5 cm⁻¹)

A crystalline structure the D and L chains organize into a parallel fashion, with a 3_1 helical substructure

The difference between the PDLLA and the PLLA:PDLA films : the peak widths(indicate the high degree of crystallinity)

Time-domain SFG studies can generate more insight into these matters [34]. For the spp spectrum we observe no signal for the same film.

Conclusion

1. For the four different types of films,

we find that the methyl groups are sensitive markers for the chain-chain ordering

- 2. The crystalized PLLA films display a strong signal, with almost identical spectral features in the ssp and spp spectra
 - \rightarrow both structures are comparable
 - ightarrow the interface does not play a large role in determining the structure
- 3. The very weak SFG signals on the films composed of stereo-regular amounts of monomers (PDLLA) in single chains, and stereo-regular amounts of polymer chains (PDLA/PLLA)
- →Shows the large signal observed for the PLLA is induced by the crystalline structure