Tight Binding Based modelling of bilayer graphene

1. Tight binding theory

When electron is tightly bounded to nucleus, it is useful to express wavefunction in terms of one atom wavefunction basis.

The wavefunction with band index j satisfying the Bloch condition can be expressed as

$$
\begin{equation*}
\left|\Psi_{j \mathbf{k}}\right\rangle=\frac{1}{\sqrt{N}} \sum_{p} \sum_{\mathbf{R}_{i}} e^{i \mathbf{k} \cdot\left(\mathbf{R}_{i}+\boldsymbol{\delta}_{p}\right)} c_{j}^{p}(\mathbf{k})\left|\phi^{p}, \mathbf{R}_{i}+\boldsymbol{\delta}_{p}\right\rangle \tag{1}
\end{equation*}
$$

where N is total number of unit cells and p is the index for atom type in the unit cell and \mathbf{R}_{i} is a lattice vector. $\boldsymbol{\delta}_{p}$ describes the position of atom p in the unit cell and $\left|\varphi^{p}, \mathbf{R}+\boldsymbol{\delta}_{p}\right\rangle$ is the one atom π orbital wavefunction of atom p centered on $\mathbf{R}_{i}+\boldsymbol{\delta}_{p}$. In case of bilayer graphene, we are only interested in π orbital electron. Thus I omitted the summation over energy level of one atom. The lattice structure of bilayer graphene is described below.

(a)

From the figure, you can see that p can be $A 1, B 1, A 2, B 2$. Then p^{\prime} th bloch function is given by

$$
\begin{equation*}
\left|\Phi_{\mathbf{k}}^{p}\right\rangle=\frac{1}{\sqrt{N}} \sum_{\mathbf{R}_{i}} e^{i \mathbf{k} \cdot\left(\mathbf{R}_{i}+\boldsymbol{\delta}_{p}\right)}\left|\varphi^{p}, \mathbf{R}_{p}+\boldsymbol{\delta}_{p}\right\rangle \tag{2}
\end{equation*}
$$

Using p'th bloch function, total wavefunction can be written as

$$
\begin{equation*}
\left|\Psi_{j \mathbf{k}}\right\rangle=\sum_{p} c_{j}^{p}(\mathbf{k})\left|\Phi_{\mathbf{k}}^{p}\right\rangle \tag{3}
\end{equation*}
$$

In order to determine $c_{j}^{p}(\mathbf{k})$, the wavefunction is inserted into Schrödinger equation

$$
\begin{equation*}
\hat{H}\left|\Psi_{j \mathbf{k}}\right\rangle=E_{j}(\mathbf{k})\left|\Psi_{j \mathbf{k}}\right\rangle \tag{4}
\end{equation*}
$$

By using eqn (3), one gets

$$
\begin{equation*}
\sum_{p} c_{j}^{p}(\mathbf{k}) \hat{H}\left|\Phi_{\mathbf{k}}^{p}\right\rangle=E_{j}(\mathbf{k}) \sum_{p} c_{j}^{p}(\mathbf{k})\left|\Phi_{\mathbf{k}}^{p}\right\rangle \tag{5}
\end{equation*}
$$

Acting $\left\langle\Phi_{\mathbf{k}}^{p^{\prime}}\right|$ gives

$$
\begin{equation*}
\sum_{p} c_{j}^{p}(\mathbf{k})\left\langle\Phi_{\mathbf{k}}^{p^{\prime}}\right| \hat{H}\left|\Phi_{\mathbf{k}}^{p}\right\rangle=E_{j}(\mathbf{k}) \sum_{p} c_{j}^{p}(\mathbf{k})\left\langle\Phi_{\mathbf{k}}^{p^{\prime}} \mid \Phi_{\mathbf{k}}^{p}\right\rangle \tag{6}
\end{equation*}
$$

This can be written as matrix form

$$
\begin{equation*}
\hat{\mathrm{H}} \cdot \vec{c}_{j}=E_{j}(\mathbf{k}) \cdot \hat{\mathrm{S}} \cdot \vec{c}_{j} \tag{7}
\end{equation*}
$$

Matrix element of \hat{H} and \hat{S} is given by

$$
\begin{align*}
& \hat{\mathrm{H}}_{p^{\prime} p}=\left\langle\Phi_{\mathbf{k}}^{p^{\prime}}\right| \hat{H}\left|\Phi_{\mathbf{k}}^{p}\right\rangle \\
& =\frac{1}{N} e^{i \mathbf{k} \cdot\left(\boldsymbol{\delta}_{p}-\boldsymbol{\delta}_{p^{\prime}}\right)} \sum_{\mathbf{R}_{j}} \sum_{\mathbf{R}_{i}} e^{i \mathbf{k} \cdot\left(\mathbf{R}_{i}-\mathbf{R}_{j}\right)}\left\langle\varphi^{p^{\prime}}, \mathbf{R}_{j}+\boldsymbol{\delta}_{p^{\prime}}\right| \hat{H}\left|\varphi^{p}, \mathbf{R}_{i}+\boldsymbol{\delta}_{p}\right\rangle \tag{8}\\
& =\sum_{\mathbf{R}_{i}} e^{i \mathbf{k} \cdot\left(\mathbf{R}_{i}+\boldsymbol{\delta}_{p}-\boldsymbol{\delta}_{p^{\prime}}\right)}\left\langle\varphi^{p^{\prime}}, \overrightarrow{0}+\boldsymbol{\delta}_{p^{\prime}}\right| \hat{H}\left|\varphi^{p}, \mathbf{R}_{i}+\boldsymbol{\delta}_{p}\right\rangle
\end{align*}
$$

$$
\begin{align*}
& \hat{\mathrm{S}}_{p^{\prime} p}=\left\langle\Phi_{\mathbf{k}}^{p^{\prime}} \mid \Phi_{\mathbf{k}}^{p}\right\rangle \\
& =\frac{1}{N} e^{i \mathbf{k} \cdot\left(\boldsymbol{\delta}_{p}-\boldsymbol{\delta}_{p^{\prime}}\right)} \sum_{\mathbf{R}_{j}} \sum_{\mathbf{R}_{i}} e^{i \mathbf{k} \cdot\left(\mathbf{R}_{i}-\mathbf{R}_{j}\right)}\left\langle\varphi^{p^{\prime}}, \mathbf{R}_{j}+\boldsymbol{\delta}_{p^{\prime}} \mid \varphi^{p}, \mathbf{R}_{i}+\boldsymbol{\delta}_{p}\right\rangle \\
& =e^{i \mathbf{k} \cdot\left(\boldsymbol{\delta}_{p}-\boldsymbol{\delta}_{p^{\prime}}\right)} \sum_{\mathbf{R}_{i}} e^{i \mathbf{k} \cdot \mathbf{R}_{i}}\left\langle\varphi^{p^{\prime}}, \overrightarrow{0}+\boldsymbol{\delta}_{p^{\prime}} \mid \varphi^{p}, \mathbf{R}_{i}+\boldsymbol{\delta}_{p}\right\rangle \tag{9}
\end{align*}
$$

2. Approximations in tight binding

So far, everything is exact. Here comes the approximation. First, We assume that $\hat{\mathrm{S}}=\mathrm{I}$, i.e., the overlap between one atom wavefunctions centered on different position is ignored. Then equation (7) becomes usual eigenvalue problem.

$$
\begin{equation*}
\hat{\mathrm{H}} \cdot \vec{c}_{j}=E_{j}(\mathbf{k}) \cdot \vec{c}_{j} \tag{10}
\end{equation*}
$$

Second, when we calculate the component of $\hat{\mathrm{H}}$, we only consider interaction between the nearest neighbors, i.e., $\left\langle\varphi^{p^{\prime}}, \overrightarrow{0}+\boldsymbol{\delta}_{p^{\prime}}\right| \hat{H}\left|\varphi^{p}, \mathbf{R}_{i}+\boldsymbol{\delta}_{p}\right\rangle$ is 0 unless $\boldsymbol{\delta}_{p^{\prime}}$ and $\mathbf{R}_{i}+\boldsymbol{\delta}_{p}$ are the nearest neighbors.

3. Bilayer graphene band structure

Now we are ready to calculate band structure of bilayer graphene. From the figure below, the lattice vectors of the bilayer graphene lattice are given by
$\mathrm{a}_{1}=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}, 0\right) a_{0}, \quad \mathrm{a}_{2}=\left(\frac{\sqrt{3}}{2},-\frac{1}{2}, 0\right) a_{0}$ where a_{0} is lattice constant

Since there are four atoms in the basis, there are four Bloch functions. Let's denote four atoms by $A 1, B 1, A 2, B 2$. $A 1, B 2$ are in lower plane and $A 2, B 2$ are in upper plane. Thus \hat{H} is 4 by matrix and the matrix element is given by

$$
\begin{align*}
& \hat{\mathrm{H}}_{A 1, A 1}=\hat{\mathrm{H}}_{B 1, B 1}=\left\langle\Phi_{\mathbf{k}}^{A 1}\right| \hat{H}\left|\Phi_{\mathbf{k}}^{A 1}\right\rangle=\left\langle\varphi, \overrightarrow{0}+\boldsymbol{\delta}_{A 1}\right| \hat{H}\left|\varphi, \overrightarrow{0}+\boldsymbol{\delta}_{A 1}\right\rangle=\varepsilon_{1} \\
& \hat{\mathrm{H}}_{A 2, A 2}=\hat{\mathrm{H}}_{B 2, B 2}=\left\langle\Phi_{\mathbf{k}}^{A 2}\right| \hat{H}\left|\Phi_{\mathbf{k}}^{A 2}\right\rangle=\left\langle\varphi, \overrightarrow{0}+\boldsymbol{\delta}_{A 2}\right| \hat{H}\left|\varphi, \overrightarrow{0}+\boldsymbol{\delta}_{A 2}\right\rangle=\varepsilon_{2} \\
& \hat{\mathrm{H}}_{A 1, B 1}=\hat{\mathrm{H}}_{A 2, B 2}=\left\langle\Phi_{\mathbf{k}}^{A 1}\right| \hat{H}\left|\Phi_{\mathbf{k}}^{B 1}\right\rangle=\left\langle\Phi_{\mathbf{k}}^{B 1}\right| \hat{H}\left|\Phi_{\mathbf{k}}^{A 1}\right\rangle^{*} \\
& =-\gamma_{0}\left(e^{i \mathbf{k} \cdot \mathbf{r}_{1}}+e^{i \mathbf{k} \cdot \mathbf{r}_{2}}+e^{i \mathbf{k} \cdot \mathbf{r}_{3}}\right)=-\gamma_{0} f_{1}(\mathbf{k}) \tag{12}\\
& \hat{\mathrm{H}}_{A 1, A 2}=\left\langle\Phi_{\mathbf{k}}^{A 1}\right| \hat{H}\left|\Phi_{\mathbf{k}}^{A 2}\right\rangle=-\gamma_{1} e^{i \mathbf{k} \cdot \mathbf{r}_{4}} \\
& \text { where }-\gamma_{0}=\left\langle\varphi^{A 1}, \boldsymbol{\delta}_{A 1}\right| \hat{H}\left|\varphi^{A 1}, \boldsymbol{\delta}_{A 1}+\mathbf{r}_{1}\right\rangle,-\gamma_{1}=\left\langle\varphi^{A 1}, \boldsymbol{\delta}_{A 1}\right| \hat{H}\left|\varphi^{A 2}, \boldsymbol{\delta}_{A 1}+\mathbf{r}_{4}\right\rangle
\end{align*}
$$

Here \mathbf{r}_{i} is the vectors connecting the nearest neighbors which are given by

$$
\begin{equation*}
\mathbf{r}_{1}=\left(\frac{1}{2 \sqrt{3}}, \frac{1}{2}, 0\right) a_{0}, \quad \mathbf{r}_{2}=\left(\frac{1}{2 \sqrt{3}},-\frac{1}{2}, 0\right) a_{0}, \quad \mathbf{r}_{3}=\left(-\frac{1}{\sqrt{3}}, 0,0\right) a_{0}, \quad \mathbf{r}_{4}=(0,0,1) b_{0} \tag{13}
\end{equation*}
$$

Here b_{0} is the distance between planes. Using (13), $f_{1}(\mathbf{k})$ and $e^{i \mathbf{k} \cdot \mathbf{r}_{4}}$ can be written as

$$
\begin{align*}
& f_{1}(\mathbf{k})=e^{-i k_{x} a_{0} / \sqrt{3}}+2 e^{i k_{x} a_{0} /(2 \sqrt{3})} \cos \left(k_{y} a_{0} / 2\right) \\
& e^{i \mathbf{k} \cdot \mathbf{r}_{4}}=1 \tag{14}
\end{align*}
$$

To sum up, energy band are given by eigenvalues of $\hat{\mathrm{H}}$ given by

$$
\left.\hat{\mathrm{H}}=\begin{array}{c}
|A 1\rangle \\
\langle A 1| \\
\langle A 2| \\
\langle B 1| \\
\langle B 2|
\end{array} \left\lvert\, \begin{array}{cccc}
-\Delta / 2 & -\gamma_{0} f_{1}(\mathbf{k}) & -\gamma_{1} & 0 \\
-\gamma_{0} f_{1}(\mathbf{k})^{*} & -\Delta / 2 & 0 & 0 \\
-\gamma_{1} & 0 & \Delta / 2 & -\gamma_{0} f_{1}(\mathbf{k}) \\
0 & 0 & -\gamma_{0} f_{1}(\mathbf{k})^{*} & \Delta / 2
\end{array}\right.\right)
$$

In (15) I set $\varepsilon_{1}=-\Delta / 2 \Leftrightarrow \varepsilon_{1}=-\varepsilon_{2}$ (In only causes a shift of eigenvalues). In order to calculate band structure the reciprocal vectors have to be known. The reciprocal vectors \mathbf{b}_{i} are calculated by requiring $\mathbf{a}_{i} \cdot \mathbf{b}_{j}=2 \pi \delta_{i j}$. The reciprocal vectors are found to be

$$
\begin{equation*}
\mathbf{b}_{1}=\left(\frac{1}{\sqrt{3}}, 1\right) \frac{2 \pi}{a_{0}}, \quad \mathbf{b}_{2}=\left(\frac{1}{\sqrt{3}},-1\right) \frac{2 \pi}{a_{0}} \tag{16}
\end{equation*}
$$

From the reciprocal vectors the first Brillouin zone can be found. Below figure is describing Brillouin zone.

$\mathrm{K}=\left(\frac{2 \pi}{\sqrt{3} a_{0}}, \frac{2 \pi}{3 a_{0}}\right)$ in the figure is called Dirac point.

Graph of band structure is like below.

$\Delta=0, \frac{\gamma_{1}}{\gamma_{0}}=0.2, \mathrm{k}_{\mathrm{y}}=\frac{2 \pi}{3 a_{0}}$ (graph near Dirac Point)

$\frac{\gamma_{0}}{\Delta / 2}=0.25, \quad \frac{\gamma_{1}}{\gamma_{0}}=2, \quad \mathrm{k}_{\mathrm{y}}=\frac{2 \pi}{3 a_{0}}$ (graph near Dirac Point)

4. References

http://repetit.dk/files/projects/p9.pdf
1947, P.R. Wallace, the band theory of graphite, Physical Review Letters, Volume 71
1984, Gordon W. Semenoff, Condensed matter simulation of a Three-Dimensional Anamaly, Physical Review Letters, Volume 53
http://arxiv.org/abs/0712.0765
2009, A. H. Castro Neto, The electronic properties of graphene, REVIEWS OF MODERN PHYSICS, VOLUME 81

