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Second harmonic microscopy of monolayer MoS,
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We show that the lack of inversion symmetry in monolayer MoS, allows strong optical second harmonic
generation. The second harmonic of an 810-nm pulse is generated in a mechanically exfoliated monolayer, with a
nonlinear susceptibility on the order of 10~7 m/V. The susceptibility reduces by a factor of seven in trilayers, and
by about two orders of magnitude in even layers. A proof-of-principle second harmonic microscopy measurement
is performed on samples grown by chemical vapor deposition, which illustrates potential applications of this
effect in the fast and noninvasive detection of crystalline orientation, thickness uniformity, layer stacking. and
single-crystal domain size of atomically thin films of MoS, and similar materials.
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Application of MoS, on nanoscale transistor
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Splendiani et al. Nano Lett. 2010, 10, 1271-1275.

‘ Monolayer MoS, has
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channel component. ) Radisavljevic et al. Naz. Nanotech. 2011, 6, 147.




Optical properties of MoS, thin layer
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Structure of MoS, : Inversion symmetry broken in odd layer
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Zhao et al. Nano Lett. 13, 1007—-1015 (2013).




Second harmonic generation occur in noncentrosymmetric media

In the presence of very intense light field (ex-pulsed laser), polarization response has
high order response.
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Setup and sample status
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b. 1. (Color online) (a) Schematics of the experimental setup.

(b) Microscope image of a mechanically exfoliated MoS; flake. (c)
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 structure of monolayer MoS,.
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-Peak power at the

sample surface:
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For Dy, symmetry, second order susceptibility components are,

(2

‘ Gives 6-fold symmetry in SHG intensity with rotation along
principal axis (z-axis) — * SHG E-field is 3-fold symmetry.



Azimuthal angle dependence of SH signal

Z=7'=C ‘ With respect to the laboratory coordinates (x,y,z), @
\ 1s the rotation angle of sample along z-axis
(same as c-axis for MoS, monolayer).
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A Effective second order susceptibility :

L d A

y Zé;) = [;(G)SHG) ' Z(C‘)SHG ) [x? [Z(C‘)FUN) -e(@pyy )]

//ﬁ\/l\ (2) s e '\ . (2)
g Aijk = (@-i)(j-j)k-k )Zi'j’k'

(1) In Parallel output , possible component is 7.

D) 2 = 4D (=sin’ )+ x 2, . (cos’ g)(=sing) + z7). (cos’ g)(—sing) + ). .(cos’ #)(—sin )

_ (2) . 3 . 2 _ . . 3 _ (2) .
= Xy (=SIN° @ +3singcos” @) = (3sing—4sin” ¢) = y 7, . sin3¢

(2) In Perpendicular output , possible component is %y

2) ;(;2 = ;(;2; ,»(cos #)(sin® @) + Zﬂ,x. (cos’ @) + ;(fc.zi.y. (sin @)(cos @)(—sin @) + ;(fc.zi.x. (sin @)(—sin @)(cos @)

) 3 2N (2)
= Xy (—COS” @ +3cos@sin” @) =—y ", cos3¢



Azimuthal angle dependence of SH signal : Result
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FIG. 2. (Color online) Second harmonic generation from the
mechanically exfoliated MoS; sample: The upper inset of (a) shows
the spectra of the second harmonic from the monolayer MoS- (blue)
and from the bare substrate (gray, multiplied by a factor of 100),
as well as the fundamental beams (red). The lower inset shows the
second harmonic power measured from regions with different atomic
layers. The main panel of (a) shows the power dependence of second
harmonic generation, with the solid line indicating the expected
quadratic dependence. (b) The power of parallel (blue squares) and
perpendicular (black circles) components of the second harmonic as
a function of &, the angle between the laboratory and the crystalline
coordinates. The blue (black) solid line indicates the expected sin?36
(cos”3#) dependence.
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‘ Quadratic dependence of SHG intensity
versus fundamental power.

‘ 6-fold symmetry in SHG intensity vs
azimuthal angle indicates that mechanically

exfoliated MoS, is single crystal.
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Determination of y(?
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SHG from material having hexagonal lattice : eg) alpha quartz

http://www.quartzpage.de/gen_struct.html




SHG from material having hexagonal lattice : eg) alpha quartz
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Helical structure — no inversion symmetry.

‘ Leading to strong bulk SHG signal.

Left-handed = Right-handed

Allowed second order susceptibility
tensor components are,
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SHG from z-cut alpha quartz

With respect to the laboratory coordinates (x,y’,z),
@ is the rotation angle of quartz along z-axis
(same as c-axis for z-cut quartz).

‘ Here, incident plane is x'z' plane. So, unit vector of
polarization is ,; in S-pol, and in

cos@x +sin@z
P-pol.

Y Effective second order susceptibility :
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SHG from z-cut alpha quartz

(2) In S-in / S-out , possible component is Z.,

X)), = X (Sin’ @)+ 1) (sin@)(cos” @) + x,) (sin g)(cos” @) + x,.) (sin §)(cos” ¢)
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SHG measurements on CVD MoS, film

(a) . Fundamental Peak lrradiance (W f‘r!f )
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& ' —— ] FIG. 3. (Color online) Second harmonic generation from a
%4 410° triangular monolayer MoS. flake grown by CVD, as shown in the
al B lower inset of (a). The main panel of (a) shows the power dependence
107 ¢ E 2 of second harmonic generation. The solid line indicates the expected
= 0 J10° quadratic dependence. (b) shows angular dependence of the parallel
(blue squares) and perpendicular (black circles) components of the
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second harmonic, along with the expected dependence (solid lines).
The upper inset of (a) shows a separate measurement of the parallel

component with a finer step size near 8 = 0°.
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SHG mapping of CVD MoS, film

FIG. 4. (Color online) (a) Optical microscopy photograph of a region of a substrate containing flakes grown by CVD. (b) and (c) Maps of
P, and P, over the region indicated by the box in (a). (d) Map of the total power, P, + P,. (e) Map of # calculated from (b) and (c).
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