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Introduction
What is the Gouy phase shift?

For Gaussian beam or TEM00 mode,

E (r , z) = E0
w0

w(z)
exp

(
−r2

w(z)2
− ikz − ik

r2

2R(z)
+ iφG(z)

)
(1)

Along its propagation direction, a Gaussian beam acquires a phase shift which differs
from that for a plane wave with the same optical frequency. This difference is called
the Gouy phase shift, named after L. G. Gouy who first discovered this phenomenon.

φG (z) = − arctan(z/zR) (2)

where zR = πw2
0 /λ is the Rayleigh length and z = 0 corresponds to the position of the

beam waist.

Jonggwan Lee Physical origin of the Gouy phase shift



Physical origin of the Gouy phase shift
Discovered more than a century ago - but where is it from?

L. G. Gouy

Although Gouy made his discovery more
than 100 years ago, efforts are still being
made to provide a simple and satisfying
physical interpretation of this phase
anomaly.

In this letter, the authors provide a simple
intuitive explanation of the physical origin
of the Gouy phase shift.

Jonggwan Lee Physical origin of the Gouy phase shift



Physical origin of the Gouy phase shift
Derivation - for Gaussian beam

Consider a monochromatic wave of frequency ω and wavenumber k = ω/c along z
direction.

If it is an infinite plane wave, the momentum has no transverse components.
A finite beam, however, consists transverse components of momentum. The
wavenumber can be written as:

k2 = k2x + k2y + k2z (3)

Since the wave-vector components are finitely spread , it is appropriate to deal with
expectation values (or simply averages) defined by:

〈ξ〉 =

∫∞
−∞ ξ|f (ξ)|2dξ∫∞
−∞ |f (ξ)|2dξ

(4)

where f (ξ) is the distribution of the variable ξ
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Physical origin of the Gouy phase shift
Derivation - for Gaussian beam

The effective axial propagation constant can be defined as

k̄z =
〈k2z 〉
k

= k − 〈k
2
x 〉
k
−
〈k2y 〉
k

(5)

which is associated with the overall propagation phase φ(z) through k̄z = ∂φ(z)/∂z .
By integrating with respect to z we get

φ(z) = kz − 1

k

∫ z

{〈k2x 〉+ 〈k2y 〉}dz (6)

Here the first term stands for phase evolution of infinite plane wave, and the second
gives rise to the Gouy phase shift

φG = −1

k

∫ z

{〈k2x 〉+ 〈k2y 〉}dz (7)
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Physical origin of the Gouy phase shift
Derivation - for Gaussian beam

φG = −1

k

∫ z

{〈k2x 〉+ 〈k2y 〉}dz (8)

Hence, the Gouy shift is due to the transverse momentum spread. It can be well
formulated since we know transverse distribution exactly. For Gaussian beam,
transverse distribution is given by:

f (x , y) =

√
2

π

1

w(z)
exp

[
−x2 + y2

w2(z)

]
(9)

Here w2(z) = w2
0

[
1 +

(
z
zR

)2]
is beam radius and w0 is the minimum spot size at

z = 0. The Rayleigh length zR is defined by zR = πw2
0 /λ
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Physical origin of the Gouy phase shift
Derivation - for Gaussian beam

The distribution of transverse wavevector components is given by the Fourier
transform.

F (kx , ky ) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

f (x , y)e−ikxxe−ikyydxdy (10)

=

√
1

2π3
1

w(z)

∫ ∞
−∞

∫ ∞
−∞

exp

[
−x2 + y2

w2(z)

]
e−ikxxe−ikyydxdy

=
w(z)√

2π
exp

[
−w2(z)

4
(k2x + k2y )

]
We can see this is also Gaussian and centered about kx = ky = 0. And both of the
distribution are normalized such that

∫ ∫
f (x , y)dxdy =

∫ ∫
F (kx , ky )dkxdky = 1
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Physical origin of the Gouy phase shift
Derivation - for Gaussian beam

Now, we have

〈k2x 〉 =

∫ ∞
−∞

∫ ∞
−∞

k2x |F (kx , ky )|2dkxdky

=

∫ ∞
−∞

∫ ∞
−∞

k2x
w2(z)

2π
exp

[
−w2(z)

2
(k2x + k2y )

]
dkxdky

=
w2(z)

2π

∫ ∞
−∞

k2x exp

[
−w2(z)

2
k2x

]
dkx

∫ ∞
−∞

exp

[
−w2(z)

2
k2y

]
dky

=
1

w2(z)
= 〈k2y 〉

The Gouy phase shift for the Gaussian beam is then:

φG =
1

k

∫ z

{〈k2x 〉+ 〈k2y 〉}dz = −2

k

∫ z 1

w2(z)
dz = − arctan(z/zR) (11)
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Physical origin of the Gouy phase shift
Generalization - for higher-order transverse modes

We now show that our equation predicts the phase anomaly not only for fundamental
Gaussian beams but also for higher-order transverse modes and hence is valid for
arbitrary field distributions.

One complete set of transverse modes is described by Hermite-Gaussian beams.

fmn(x , y) = Cmn

√
2

w(z)
Θm

[√
2x

w(z)

]
Θn

[√
2y

w(z)

]
(12)

where Θm(ξ) = Hm(ξ) exp(−ξ2/2) is the Hermite-Gaussian of mth order and

Cmn =
(

1
π2m+nm!n!

1/2
)

is normalization coefficient.
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Physical origin of the Gouy phase shift
Generalization - for higher-order transverse modes

The Fourier transform of Hermite-Gaussian distribution is

Fmn(kx , ky ) = (−i)m+nCmn
w(z)√

2
Θm

[
w(z)kx√

2

]
Θn

[
w(z)ky√

2

]
(13)

Utilizing the recursion relation Hn+1 − 2ξHn + 2nHn−1 = 0 for the Hermite
polynomials, one can derive the expectation values.

〈k2x 〉mn =
2

w2(z)

(
m +

1

2

)
〈k2y 〉mn =

2

w2(z)

(
n +

1

2

)
Hence, Gouy shift for TEMmn modes are formulated by:

φG ,mn(z) = −(m + n + 1) arctan(z/zR) (14)
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Conclusion

• A general expression and physical explanation of the Gouy phase shift is discussed,
by showing that the Gouy phase can be derived from the transverse momenta.

• Gouy shift of finite beams stems from transverse spatial confinement, which
consequently causes transverse momentum component.

• This approach is valid for higher transverse modes, as well as for fundamental
transverse (Gaussian) mode.
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