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Melatonin is a pineal hormone that has been shown to have protective effects in several diseases that are
associated with cholesterol dysregulation, including cardiovascular disease, Alzheimer’s disease, and certain
types of cancers. Cholesterol is a major membrane constituent with both a structural and functional
influence. It is also known that melatonin readily partitions into cellular membranes. We investigated the
effects of melatonin and cholesterol on the structure and physical properties of a 1,2-dipalmitoyl-sn-
glycero-3-phosphocholine (DPPC) monolayer as a simple membrane model using the Langmuir—Blodgett
(L-B) monolayer technique and molecular dynamics (MD) simulations. We report that melatonin increases
the area per lipid and elastic compressibility of the DPPC monolayer in a concentration dependent manner,
while cholesterol has the opposite effect. When both melatonin and cholesterol were present in the
monolayer, the compression isotherms showed normalization of the area per molecule towards that of the
pure DPPC monolayer, thus indicating that melatonin counteracts and alleviates cholesterol's effects.
Atomistic MD simulations of melatonin enriched DPPC systems correlate with our experimental findings
and illustrate the structural effects of both cholesterol and melatonin. Our results suggest that melatonin is
able to lessen the influence of cholesterol through two different mechanisms. Firstly, we have shown that
melatonin has a fluidizing effect on monolayers comprising only lipid molecules. Secondly, we also observe
Eecewm 30th July 2013 that melatonin interacts directly with cholesterol. Our findings suggest a direct nonspecific interaction of
ccepted 5th November 2013
melatonin may be a mechanism involved in reducing cholesterol associated membrane effects, thus
suggesting the existence of a new mechanism of melatonin's action. This may have important biological
www.rsc.org/softmatter relevance in addition to the well-known anti-oxidative and receptor binding effects.
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https://www.healthline.com/nutrition/melatonin
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dOpposite result between DPPC binding with melatonin and cholesterol
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The elastic compressibility (C) was calculated from
the pressure versus area isotherm using eqn (1). C, ' is the
compression modulus, A is the area in the trough, = is the
pressure.

C, ' = —A(dn/dA) (1)

In general, a lower C,”' value means an increase in the
monolayer compressibility.**
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DPPC binds with mono and divalent salt from Allen’s group

60
1\ 0.6 M NaCl 5 = H.0
— 504 o ()
S E =2 M NaCl
S 2.0 M NaCl . 404 2 M KCI
€ 40- 5 50 =2 M MgCl,
° 3 =2 M CaCl,
- o 20
® 304 8
g g 104
o » ol ‘ ,
8 20+ 40 60 80 100 o
,{:\'i Mean Molecular Area (A*’molecule) o
] E o~ 0
S
0+ T 1 r 1 - Tt 1 v T ° T T d T T .g
40 50 60 70 80 90 100 110 40 50 60 70 80 9 100 110 ;
60 60 c
| c —HZO d —HZO g !
E 504 === (.3 M MgCl, 504 e=().3 M CaCl, E
= ] = 1.0 M MgCl, | e=—=1.0 M CaCl, 1300 1200 1100
E 10, ——20MMgCl, | 0] ——20MCaCl, Wavenumber (cm’) DPPC/H,0  DPPC/2.0 M CaCl,
2
=]
3 30 1 Expansion 30 Condensation
g
o
o 204
]
£
S 10 - .
s http://dx.doi.org/10.1016/j.jcis.2016.06.016
04

- r r 1 -t 1 1T T 7 T d — 1 1
40 S50 60 70 80 90 100 110 40 50 60 70 80 9 100 110
Mean Molecular Area (A*’molecule) Mean Molecular Area (A’ ’molecule)




DPPC bind melatonin and cholesterol
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dSummarize of melatonin effected on DPPC and Cholesterol

| ¥ _
- A 3 5% Chol § B & 0% Chol
: T 20% Chol E | Q 5% Chol
o 101 & 100% Chol 18 | & 33% Chol
| 1 3 & 100% Chol
% w | -
- = 100} A
L | L |
- OF 1 -
= | =
~ g ]
;;f. 3 50-' -
-a-; e ;
£ | 1= |
s
g of |
=] s
o
| z
_20 ¥ S Y U VI D\ e T | Y gy g e g e g ¥t | [ G S\ | [ Y VI VRN WA Y Uty WY | (e Y VY Y i

P L T ) T TR —5() L— i PO R LT
-0.25 0 025 05 0.75 1 1.25 —-0.25 0 0.25 0.5 0.75 1 1.25
Concentration of Melatonin [mM] Concentration of Melatonin [mM]




AMD simulation schematic
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AMD simulation schematic
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Discussion and Summarizing  QpDPPC-melatonin has increased area which is
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O O O C possible that melatonin is able to interact with both cholesterol
and the phospholipids through hydrophobic interactions
" T Y without necessarily strongly influencing the hydrogen bonding

among the cholesterol and DPPC molecules. However, Bon-

%PP C + Mel + Chol giorno et al.® reported that melatonin’s ability to hydrogen bond
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Fig. 8. Schematic representation of the localization of melatonin
and CHL in anhydrous reversed micelles.
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in disagreement with the data of Table 4. Another dis-
crepancy with the present work concerns the presence
in this range of an additional fundamental at 1300
cm ™! corresponding to a weak band observed in both
the IR and Raman spectra for liquid indole, probably
suggested by AM1 force field calculations. The latter
give a calculated frequency of 1310 cm ™! with a large
calculated intensity for this mode. In solid indole, we
observe a weak band (1% relative intensity) at 1303
em~! in the FT-R spectrum and a shoulder at 1302
cm~! in the FT-IR spectrum. This should rather be
assigned to a combination mode corresponding (o a cal-
culated frequency of 1304-1300 cm™*, coupling v,¢ with
v,g modes, for which both bands are strong in the
Raman but weak in the IR spectrum.

High-frequency modes. These are NH and CH stretching
modes. Owing to the hydrogen bonding, the frequency

of the former mode exhibits a large shift from 3523.2
cm ™! for indole vapour to 3419 and 3398 cm™?! for
liquid and solid indole, respectively. This corresponds
to a weak hydrogen bond when compared with that of
pyrazole,?® where the vy, mode has the same frequency
in the vapour phase but shifts to about 2800 cm ™! in
solid pyrazole. On N-deuteration, the vyp mode shifts to
2620.0 cm™! for indole vapour, whereas the calculated
frequency is 2587 cm ™!, as obtained using a scale factor
to adjust the vyy frequency to the experimental value.
The deviation Av =33 cm™' is mainly due to the
anharmonicity of this mode. For comparison with pyra-
zole vapour, the vyp mode was observed at 2640 cm !,
calculated at 2583 cm ™' (Av = 57 cm™!), revealing a
stronger anharmonic character for its vy, mode.

In the case of CH stretching modes, six modes are
expected for two pyrrolic and four benzenic CH bonds.
Two bands were previously observed! at 3123 and 3106
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Table 4. Observed and calculated frequencies (cm ™) for indole

Mode Solid® Liquid® Vapour® Calculated Potential energy distributions®
v, 3398s. 1 3419 s, — 3523.2 sB 35231 99.R 5 99NH

Vo 3122 -, 16 3123 s, —- 3117.8 vwB 3131,1 7,R 12 +61C,H +38C;H

vy 3101 -, 4 3106 s, - -— 3107, 1 1,R 6 -62C,H +38C_H

Va 3062 -, 34 3050 - 3071.7 sA 3063, 1 20,R 23 +38C,H +33C,H +14C;H +13C.H
Ve 3047 w, - 3050 - 3050.7 mB 3051,1 30,R 4  -40C,H +27C,H +19C,H -14C,H
Ve 3055 -, 34 3050 - — 3040,1 4,R 11 +41C,H +31C4H -17C,H -11CgH
v, 3024 -, 2 3050 - — 3032,1 O,R 3  +35C,H -33C,H +18C,H —15C,H
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Fig. 3. (a) FT-IR spectra of TiO, (dashed curve) and TiO»-indole (solid curve),
(b) difference spectrum between TiO, and TiO»-indole, and (c¢) FT-IR spectrum
of indole.
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