Alignment of Conj ugated Polymers in a Nematic Liquid-crystal Host

Karolina P. Fritz, Gregory D. Scholes

J. Phys. Chem. B 107, 10141 (2003)

Determination of order parameter characterizing the alignment of the host with respect to the liquid-crystal director
: using linear absorption dichroism and fluorescence anisotropy.

Conj ugated polymer

Poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylevinylene] (MEH-PPV)

dye
N^{\prime}, N^{\prime}-bis(2, 6-dimethylphenyl)-3, 4, 9, 10-perylenetetra carboxylic (PERY)
a

Sample preparation

0.2% aqueous solution of poly(vinyl alcoho) - unidirectionally rubbing

Quartz slides

Two different method of preparation
(1) guest-host method

: PERY was mixed with 5CB and left overnight to homogenize
(2) solvent-induced homogeneous dispersion (SIHD)
: a. MEH-PPV dissolved in chorobenene
b. 1 mL of that solution was mixed with a small amount of 5CB
c. nitrogen flow for about 20 min to evaporate the solvent
d. nitrogen flow was stopped once the phase transition occurred, thereby leaving a homogeneous mixture o MEH-PPV and 5CB.

CARY 100 UV-Visble spectrophotometer

- Dichroic ratio (D)

$$
D=\frac{A_{\mid}}{A_{\perp}}
$$

- Linear dichroism (LD) spectrum

$$
L D=A_{\|}-A_{\perp}
$$

LD : positive - polarization of the light is parallel to the orientation of axis of the sample. negative - polarization of the light is perpendicular to the orientation of axis of the sample.

Spex Fluorolog 3-22 fluorometer

- Fluorescence anisotropy (r)

$$
r=\frac{I_{V V}-G I_{V H}}{I_{V V}+2 G I_{V H}} \quad, G=\frac{I_{V H}}{I_{H H}}
$$

PERY doped liquid crystal

Dichroic absorption of PERY in 5CB

Fluorescence anisotropy of PERY in 5CB

MEH-PPV doped liquid crystal

Dichroic ratio \& LD

- MEH-PPV ${ }_{\text {A }}$: 1.7 \& 0.14
- MEH-PPV ${ }_{B}: 0.29 \& 0.14$

Absorption anisotropy

$$
\begin{aligned}
& -\mathrm{MEH}-\mathrm{PPV}_{\mathrm{A}}: 0.20 \\
& -\mathrm{MEH}_{\mathrm{B}}-\mathrm{PPV}_{\mathrm{B}}: 0.29
\end{aligned}
$$

MEH-PPV doped liquid crystal

fluorescence anisotropy

- MEH-PPV ${ }_{\text {A }}$: 0.27
- MEH-PPV ${ }_{B}$: 0.30

Discussion \& Conclusion

TABLE 1: Summary of All the Measured Alignment Data
for the Three Samples, PERY, MEH- PPV $_{\text {A }}$, and
MEH- ${ }^{\text {PPV }}$ B

guest in LC	LD	D	S_{A}	S_{F}
PERY	0.22	2.9	0.35	0.57 ± 0.09
MEH-PPV $_{\mathrm{A}}$	0.14	1.7	0.20	0.27 ± 0.03
MEH-PPV $_{\mathrm{B}}$	0.14	2.6	0.29	0.30 ± 0.02

Chain-cahin interaction between polymer Or chain folding back on itself.

- Absorption

$$
\mathrm{A}=-\log _{10}[\mathrm{~T}]
$$

- Order parameter (absorption anisotropy)

Actual order parameter of the polymer may be higher than that by our measurement

$$
\begin{array}{ll}
S=\frac{1}{2}\left(3 \cos ^{2} \theta-1\right) & \begin{array}{l}
\alpha_{0}: \text { attenuation constant } \\
S=\frac{A_{\|}-A_{\perp}}{A_{\|}+2 A_{\perp}}
\end{array} \begin{array}{ll}
T_{\|}=\exp \left[-(2 S+1) \alpha_{0} D\right] \\
T_{\perp}=\exp \left[-(1-S) \alpha_{0} D\right], & \begin{array}{l}
T_{\perp}=1, T_{\|}=\exp \left(3 \alpha_{0} D\right) \text { when } \mathrm{S}=1 \\
T_{\perp}=T_{\|}=\exp \left(\alpha_{0} D\right) \text { when } \mathrm{S}=0
\end{array} \\
S=\frac{\log T_{\|}-\log T_{\perp}}{\log T_{\|}+2 \log T_{\perp}}=\frac{(2 S+1)-(1-S)}{(2 S+1)+2(1-S)} & S=\frac{A_{\|}-A_{\perp}}{A_{\|}+2 A_{\perp}} \cdot \frac{2}{3 \cos ^{2} \beta-1} \\
=\frac{3 S}{3}=S & \beta: \text { angle between the transition moment and the long molecular ax }
\end{array}
\end{array}
$$

β : angle between the transition moment and the long molecular axis

Absorption anisotropy and molecular association of some ionic dyes in liquid crystalline solution

A. Ghanadzadeh, M. S. Zakerhamidi

J ournal of molecular liquids 109, 149 (2004)

Rhodamine B (RB)

Rhodamine 6G (R6G)

- Dichroic ratio (D)

$$
D=\frac{A_{\mid}}{A_{\perp}}
$$

- Order parameter of dye in the nematic LC

$S=\frac{A_{\mathrm{t}}-A_{\perp}}{A_{\mathrm{t}}+2 A_{\perp}} \cdot \frac{2}{3 \cos ^{2} \beta-1}$
$=\frac{R-1}{R+2} \cdot \frac{2}{3 \cos ^{2} \beta-1}$
$S=\frac{R-1}{R+2}$
β : angle between the transition moment and the long molecular axis
transition moment vector of the dyes may be consider to be parallel to long molecular axis.

Fig. 2. Polarized absorption spectra of MB in the nematic solvent (MBBA). In the top spectrum the electric vector of light is parallel $\left(A_{\|}\right)$and in the bottom spectrum perpendicular $\left(A_{\perp}\right)$ to the nematic director (rubbing direction).

- Dichroic ratio of MB in MBBA

$$
D=\frac{A_{| |}}{A_{\perp}}=2.8
$$

- Linear dichroism (LD) spectrum
$L D=A_{| |}-A_{\perp}$
is positive for absorption bands the dyes, provided that the dye molecules have the orientation along the long axis
- Order parameter of dye in MBBA

$$
S=\frac{R-1}{R+2}=0.38
$$

Fluorescence of Ionic Liquids

Fig. 3. Polarized absorption spectra of RB in the nematic solvent (MBBA).

- Dichroic ratio of MB in MBBA

$$
D=\frac{A_{\mid}}{A_{\perp}}=1.9
$$

- Linear dichroism (LD) spectrum

$$
L D=A_{\dagger}-A_{\perp}
$$

is positive for absorption bands the dyes

- Order parameter of dye in MBBA

$$
S=\frac{R-1}{R+2}=0.23
$$

Sis a function of the diffence between the principal solute polarizabilities $\left(\Delta \alpha=2 \alpha_{z z}-\alpha_{x x}-\alpha_{y y}\right)$.
Lateral group in the dye moelcules Increases the polarizability of the molecules in the x - or y-axis.

conclusion

Table 1
Dichroic ratios R and order parameters S measured for the ionic dyes in MBBA solvent used in the guest-host experiments

Guest	$\lambda_{\max }(\mathrm{nm})$	$R=A_{\\|} / A_{\perp}$	$S_{\text {dye }}{ }^{\text {a }}$
R6G	535	1.9	0.23
RB	555	1.9	0.23
MB	655	2.8	0.38

Rhodamine B (RB)

Rhodamine 6G (R6G)

Iateral groups attached to the xanthene group for rhodamine dyes

Methylene blue (MB)
causes the direction of the transition moment to deviate from the long molecular axis.

MB has a higher dichroic ratio and order parameter with respect to rhodamine dyes.

