Phase sensitive SFVS

1) w_{1} (visible) and w_{2} (infrared) are spatially and timely overlapped at the sample surface.
2) SF signal and two light sources are overlapped again at LO surface. SF signal from LO collinearly propagates with retarded SF signal from the sample.
$E_{\text {tot }}(w)=E_{s}(w) e^{i w(t-T)}+E_{L O}(w) e^{i w t}$
$E_{L O}(w)>E_{s}(w)$
3) At the sample, SF light comes out and propagates through silica plate. (relative phase can be adjusted)
4) In polychromator pulses are stretched in time domain and generate interference pattern in frequency domain.
b)

Phase sensitive SFVS

$$
\begin{align*}
I= & \left|\widetilde{E}_{\text {tot }}(\omega)\right|^{2}=\left|\widetilde{E}_{\text {sample }}\right|^{2}+\left|\widetilde{E}_{\mathrm{LO}}\right|^{2}+\widetilde{E}_{\text {sample }} \tilde{E}_{\mathrm{LO}}^{*} \exp (i \omega T) \\
& +\widetilde{E}_{\text {sample }}^{*} \widetilde{E}_{\mathrm{LO}} \exp (-i \omega T) . \tag{1}
\end{align*}
$$

5) By Fourier transformation, SF Intensity is represented in time domain. And only right side is obtained.

6) Again, take inverse Fourier transformation of the interference part.

$$
\begin{aligned}
& E_{s}(w) \tilde{E}_{L O}(w) e^{i w T}=\left|E_{s}(w)\right|\left|E_{L O}(w)\right| e^{i w T+\phi_{L O}+\phi_{s}} \\
& =\left|E_{s}(w)\right|\left|E_{L O}(w)\right|\left\{\cos \left(w t+\phi_{L O}+\phi_{s}\right)+i \sin \left(w t+\phi_{L O}+\phi_{s}\right)\right\}
\end{aligned}
$$

Phase sensitive SFVS

7) Divide sample/LO interference signal by reference / LO interference signal.

$$
\frac{\left|E_{s}(w)\right|\left|E_{L O}(w)\right| e^{i w T+\phi_{L O}+\phi_{s}}}{\left|E_{r e f}(w)\right|\left|E_{L O}(w)\right| e^{i w T+\phi_{L O}+\phi_{r e f}}}=\frac{\left|E_{s}(w)\right| e^{i \phi_{s}}}{\left|E_{r e f}(w)\right| e^{i \phi_{r e f}}}
$$

8) Because SF from z-cut quartz is nonresonant, phase of reference is constant. So, phase of sample can be obtained.

$$
\chi_{\text {ref }}^{(2)}=\chi_{\text {ref }, \text { bulk }}^{(2)} / i(\Delta k): \frac{\pi}{2} \text { phase }(\text { known })
$$

Maximum entropy method

$$
\begin{gathered}
h=\int_{0}^{1} \log [I(\nu)] d \nu \\
\nu=\frac{\omega-\omega_{1}}{\omega_{2}-\omega_{1}}
\end{gathered}
$$

Take out M+1 data points (interval : $\triangle \mathrm{w}$)

Concept: adding information of $t>T_{\text {max }}$ should not change spectral entropy! (already maximum)
(Assumption: all of information is in spectrum!)
$\Rightarrow \frac{\mathrm{d} h}{d R(m>M)}=0=\int_{0}^{1} \frac{1}{I(v)} \frac{\mathrm{d} I(\nu)}{\mathrm{d} R(m>M)} \mathrm{d} v$.
Constraint

Maximum entropy method

From J.P.Burg ph.D, dissertation, Stanford university (1975).

$$
\begin{aligned}
& P(f)=\frac{1}{2 W} \sum_{n=-\infty}^{+\infty} R(n) e^{-2 \pi i f n \Delta t} \quad h=\int_{-W}^{W} \ln \left[\frac{1}{2 W} \sum_{n=-\infty}^{+\infty} R(n) e^{-2 \pi i f n \Delta t}\right] d f \\
& \frac{\partial h}{\partial R(s)}=\int_{-W}^{W} P^{-1}(f) e^{-2 \pi i f s t} d f=0, \text { for }(s>|N|)
\end{aligned}
$$

Here, inverse of power spectrum $P^{-1}(f)$ can be expanded in Fourier series of λ_{n}.

$$
P^{-1}(f)=\sum_{n=-\infty}^{+\infty} \lambda_{n} e^{-2 \pi i j s \Delta t} \longmapsto R(n)=\int_{-W}^{W} \frac{e^{+2 \pi i f n \Delta t}}{\sum_{s=-N}^{+N} \lambda_{n} e^{-2 \pi i f \Delta \Delta t}} d f(n \leq|N|), z=e^{+2 \pi i f \Delta t}
$$

$$
\begin{aligned}
& R(n)=\frac{1}{2 \pi i \Delta t} \int \left\lvert\, \frac{z^{-n-1}}{\sum_{s=-N}^{+N} \lambda_{s} z^{s}} d z\right.,(n \leq|N|) \\
& \sum_{s=-N}^{+N} \lambda_{s} z^{s}=P^{-1}(f)=\left[P_{N} \Delta t\right]^{-1}\left[1+a_{1} z+\ldots a_{N} z^{N}\right]\left[1+a_{1}^{*} z^{-1}+\ldots a_{N}^{*} z^{-N}\right] \\
& =\left[P_{N} \Delta t\right]^{-1} \sum_{s=0}^{+N} a_{s} z^{s} \sum_{s=0}^{+N} a_{s}^{*} z^{-s}
\end{aligned}
$$

Maximum entropy method

$$
\begin{aligned}
& R(n)=\frac{P_{N}}{2 \pi i} \int \frac{z^{-n-1}}{\sum_{s=0}^{+N} a_{s} z^{s} \sum_{s=0}^{+N} a_{s}{ }^{*} z^{-s}} d z,(n \leq|N|) \quad \text { By taking summation of } \mathrm{R}(\mathrm{n}), \\
& \sum_{n=0}^{N} a^{*}{ }_{n} \square R(n-r)=\frac{P_{N}}{2 \pi i}\left\lceil\frac{z^{-r-1} \sum_{n=0}^{+N} a_{s} z^{*} z^{-n}}{\sum_{s=0}^{+N} a_{s} z^{+N} \sum_{s=0}^{+N} a_{s} z^{*-s}} d z=\frac{P_{N}}{2 \pi i} \mathfrak{f} \frac{z^{-r-1}}{\sum_{s=0}^{+N} a_{s} z^{s}} d z\right.
\end{aligned}
$$

Since function in denominator is analytic, this contour integration can be calculated by Cauchy integral formula.

$$
\frac{1}{2 \pi i} \int \mathfrak{\int} \frac{f(z)}{z} d z=f(0)
$$

$\longrightarrow \sum_{n=0}^{N} a^{*}{ }_{n} \sqcap R(n-r)=P_{N}$ for $\mathrm{r}=0$,

$$
\sum_{n=0}^{N} a^{*} \square \square R(n-r)=0 \text { for } \mathrm{r}>0
$$

$$
\left(\begin{array}{cccc}
R(0) & R^{*}(1) & \ldots & R^{*}(M) \\
R(1) & R(0) & \cdots & R^{*}(M-1) \\
\vdots & \vdots & \ddots & \vdots \\
R(M) & R(M-1) & \cdots & R(0)
\end{array}\right)\left(\begin{array}{c}
1 \\
a_{1} \\
a_{2} \\
\vdots \\
a_{M}
\end{array}\right)=\left(\begin{array}{c}
b \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

$M+1$ by $M+1$ matrix ($M+1$ variables).

$$
\chi^{(2)}(v)=\frac{b e^{i \phi}}{g(v)}=\frac{b e^{i \phi}}{\sum_{m=0}^{M} a_{m} e^{i m v}}
$$

