

20 September 1996

CHEMICAL PHYSICS LETTERS

Chemical Physics Letters 260 (1996) 82-86

An ellipsometric study of the surface freezing of liquid alkanes

T. Pfohl^a, D. Beaglehole^b, H. Riegler^a

^a Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Rudower Chaussee 5, D-12489 Berlin, Germany ^b Department of Physics, Victoria University, Wellington, New Zealand

Received 14 March 1996; in final form 22 May 1996

Seok, Sangjun

Introduction - ellipsometry at thin films

Principles of Ellipsometry

Fig. 1 Film-Covered Surface

Total Reflective Coefficient :

$$r = r_{12} + t_{12}t_{21}r_{23}e^{-i2\beta} + t_{12}t_{21}r_{21}r_{23}^2e^{-i4\beta} + t_{12}t_{21}r_{21}^2r_{23}^3e^{-i6\beta} + \cdots$$

Principles of Ellipsometry

$$r = r_{12} + t_{12}t_{21}r_{23}e^{-i2\beta} \left\{ 1 + (r_{21}r_{23}e^{-i2\beta}) + (r_{21}r_{23}e^{-i2\beta})^2 + (r_{21}r_{23}e^{-i2\beta})^3 + \cdots \right\}$$

The sum of the geometric series :

$$r = r_{12} + \frac{t_{12}t_{21}r_{23}e^{-i2\beta}}{1 - r_{21}r_{23}e^{-i2\beta}}$$

In Fresnel's Identities

$$r_{21} = -r_{21}$$
$$t_{21} = \frac{1 - r_{12}^2}{t_{12}}$$

Fresnel equation

$$r_{p} = \frac{E_{rp}}{E_{ip}} = \frac{N_{2}\cos\theta_{1} - N_{1}\cos\theta_{2}}{N_{2}\cos\theta_{1} + N_{1}\cos\theta_{2}}$$

$$r_{s} = \frac{E_{rs}}{E_{is}} = \frac{N_{1}\cos\theta_{1} - N_{2}\cos\theta_{2}}{N_{1}\cos\theta_{1} + N_{2}\cos\theta_{2}}$$

$$t_{p} = \frac{2N_{1}\cos\theta_{1}}{N_{2}\cos\theta_{1} + N_{1}\cos\theta_{2}}$$

$$t_{s} = \frac{2N_{1}\cos\theta_{1}}{N_{1}\cos\theta_{1} + N_{2}\cos\theta_{2}}$$

Principles of Ellipsometry

$$r = \frac{r_{12} + r_{23}e^{-i2\beta}}{1 + r_{12}r_{23}e^{-i2\beta}}$$

Similarly....

$$t = -\frac{t_{12}t_{23}e^{-i2\beta}}{1 + r_{12}r_{23}e^{-i2\beta}}$$

Ellipsometry Parameter Δ, Ψ IN THAT PAPER (measured by Im(r) part) $r_p \equiv \frac{E_{rp}}{E_{ip}} = |r_p| e^{i\delta_p}$ $r_s \equiv \frac{E_{rs}}{E_{is}} = |r_s| e^{i\delta_s}$ Im(r) at Re(r) = 0 $\rho = \frac{r_p}{r_s} = \left|\frac{r_p}{r_s}\right| e^{i(\delta_p - \delta_s)} \equiv \tan \Psi e^{i\Delta} = \operatorname{Re}(r) + \operatorname{Im}(r)$

Principles of Ellipsometry - inhomogeneous dielectric surface

Im(r)= ρ at Re(r)=0 $d / \lambda \gg 1$

At perfect interface

$$\eta = \frac{\lambda}{\pi} \frac{(\epsilon_1 - \epsilon_2)}{\sqrt{\epsilon_1 + \epsilon_2}} \bar{\rho}.$$
 (1)

 η_r Surface roughness

 η_a Surface anisotropy

η

Can originate from three contributions

The value of η depends upon the particular profile, different profiles can have the same value.

Principles of Ellipsometry - inhomogeneous dielectric surface

Approximating the integrals by the layer thickness d

$$\eta_{\rm d} = d[(\epsilon_z - \epsilon_1)(\epsilon_z - \epsilon_2)/\epsilon_z], \qquad (3)$$

$$\eta_{\rm a} = d(\epsilon_x - \epsilon_z). \qquad (4)$$

Result

Interface profile proposed by X-ray study

X-ray studies have proposed

Interface profile proposed by X-ray study

 η is due to only to surface roughness. (above T_{ms})

 ϵ_1 = 1.00 (air) and ϵ_2 =2.05 (typical of an isotropic liquid alkane phase) and measured value $\rho = 1 \times 10^{-3}$

(1)

We obtained with eq. (1) and (2) : $\eta_d = -0.12nm$ $t \approx 0.70nm$

X-ray data is 0.43 nm

$$\eta = \eta_{r} + \eta_{d} + \eta_{a}$$

$$= \underbrace{\frac{t}{4.394} (\epsilon_{1} - \epsilon_{2}) \ln\left(\frac{\epsilon_{2}}{\epsilon_{1}}\right)}_{+ \int dz} \underbrace{\left[\epsilon_{z}(z) - \epsilon_{1}\right] \left[\epsilon_{z}(z) - \epsilon_{2}\right]}_{\epsilon_{z}(z)}_{+ \int dz \left[\epsilon_{x}(z) - \epsilon_{z}(z)\right]}.$$
(2)

Interface profile proposed by X-ray study

below $T_{\!_{\rm ms}}$

X-ray data is increased in the electron density in the surface layer of about 20%

Using the Clausius-Mossotti relationship
$$\gamma_{mol} = \frac{3}{N} \left(\frac{\varepsilon / \varepsilon_0 - 1}{\varepsilon / \varepsilon_0 + 2} \right)$$

Density increase obtain $\varepsilon_z (T < T_{ms}) = 2.35$

 $\eta~$ is due to only to density increase (below $T_{\rm ms}$) and layer thickness 2.5 nm

西江大墨

Using eq.3
$$\eta_d = 0.43nm$$

BUT
According to eq. (1) $\rho = -6.4 \times 10^{-3}$ $\Longrightarrow \Delta \rho \approx 6.4 \times 10^{-3}$

Compensation of layering by roughness

The postulated density change due to the surface layer results in a layering contribution of $\eta_d = +0.43$ nm. In principle, this can be compensated by an increase in the roughness with $\eta_r = -0.43$ nm. This corresponds to a 10–90 thickness of $t \approx 2.5$ nm (including the effect of increased density upon the roughness contribution). Compared to the liquid interface ($t \approx 0.70$ nm) the roughness has to increase by a factor of 4.5 to 3.2 nm upon surface freezing. This is more than the length of a molecule. In terms of roughness on a lateral molecular scale this must therefore be discarded. Roughness on a larger lateral scale, like domains of frozen alkane floating on a liquid alkane surface would result in the desired ellipsometric contribution of a "rough" interface as long as the lateral domain dimensions are smaller than the wavelength. However, such a topology is unlikely and it should change with temperature. For instance, between $T_{\rm ms}$ and $T_{\rm b}$ an increase of the solid domain fraction on lowering the temperature could be expected. This is not observed with ellipsometry although it would definitely be detectable.

Compensation of layering by anisotropy

According to Eq. (4) and with a layer thickness of 2.5 nm a layering contribution $\eta_d = +0.43$ nm can be compensated by an anisotropy value η_a with $\epsilon_x - \epsilon_z = -0.17$. This agrees with the molecular picture of alkanes oriented normal to the interface, i.e. $\epsilon_z > \epsilon_x$. To our knowledge the anisotropic dielectric constants of alkanes have not been published. However, their anisotropy may be compared to that of densely packed fatty acid molecules aligned in a smectic-A-like phase in Langmuir monolayers with $\epsilon_z = 2.46$ and $\epsilon_x = 2.32$ [6]. These numbers show that anisotropy may in fact be sufficient to compensate for the surface layering.

Alternative interface structure model

g. 2. Two possible electron density profiles (a) and their correonding similar X-ray reflectivities (b) for surface frozen sane/air interfaces. The full lines exemplify the model of a ystalline surface monolayer with an increased electron density at e interface. The dotted lines represent the model of a smectic-like onolayer ordering with identical electron densities in the surface yer and in the bulk. In this case the X-ray interferences originate om a density gap between the monolayer and the bulk.

