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Metamaterial and negative refraction
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2D-electron system in semiconductor strip

Effective wave

I=112um, a=1.25um, W=I1um
and number of strip ~13
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Band bending and modulation dopping
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2D-electron motion and kinetic inductance

_EE L m"‘d_t : Equation of motion
T dt

Under AC field (eg. Electromagnetic wave) V(x,t)=Ve' ™™
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Derivation of refractive index from L,
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With circuit equations in this system,

d L
C—+ (‘fm—l - Vm) = Im I, — Im—i‘l = K, Vin = Lk’zﬂ df;fm.

dt

> Ly, —d—Q(V & Vipsa =W}
Lk,‘zDC m — dt2 m—1 m-+1 m

After inserting V, induced by electromagnetic wave, V,, = Vye'lwt—Fma)




Derivation of refractive index from L,
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So, dispersion relation can be expressed as,
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Comparison between 2D and 3D system

Kinetic and magnetic inductance of single 3D gold nano particle

A LI:.ED/{E Lm}/f' Lk.ED/Lm
1 x1nm? |600pH/pum | ~14pH/um 430
5 x 5 nm? 24 pH/pm | ~ 1.2 pH/pm 20
10 x 10 nm? | 6.0 pH/pm | ~ 1.0 pH/pum 6
20 x 20 nm? | 1.5 pH/um | ~ 0.9 pH/um L

Kinetic and magnetic inductance of 2DEG strip array

W Lk.?.D/I Lm/l Lk.?.D/Lm
20nm | 625 nH/pm | ~ 2.3 pH/pm 27,000
100 nm | 12.5 nH/pm | ~ 2.0 pH/pum 6,300
500 nm | 2.50 nH/pm | ~ 1.6 pH/pum 1,600
1000 nm | 1.25 nH/pm | ~ 1.4 pH/pm 890

2DEGQG strip system has larger kinetic inductance

* Carrier density for silver is around 1 x 10%® m3




Result of simulated dispersion curve and current
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Dispersion curve indicates that group and phase velocity
have opposite sign.

Frequency above cutoff creates high current density on the
stripes.



Measurement of microwave
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Transfer and scattering matrix

C7UL 4.4 - THEORY OF MUL‘(% ER FILMS
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Figure 4.7. Wave'v_ectprs and their associated electric fields for the case of
normal incidence on a single dielectric layer.

f:idfence are ea§ily made. The amplitude of the electric vector of the
mc:den't beam is L*_'n. That of the reflected beam is E,', and that of the
tra;zmllfted Eeam is Ey. The electric-field amplitudes in the film are £
and E,’ for the forward and backward traveling wave i %
indicated in the figure. . e

The boundary conditions require that the electric and magnetic

fields be continuous at each terface, T S€ C ons are expressed
mte € hese conditi P 5
as fO“OWS.

First Interfac
face Second Interface

Eleclric': Ey+ Ei=E, + E} E, et 4 Eje=il =
Magnetic: H, — H)= H, — H} Hye"t — Hiemikt = ";r
or mkEy — noky = mE, — n,Ej mE e — p Ele~M = n, B,

T : .
inhg I'el_allons for the magnetic fields follow from the theory developed
. i’cnon 2.7. The phase factors e and e~* result from the fact that
”_ave tr'av-els through @ distance / from one interface to the other.
we eliminate the amplitudes E, and E,', we obtain
By’

= —i Ey
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i (4.22)
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T, In matrix form,
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MULTIPLE-BEAM INTERFERENCE
which can be abbreviated as

[l]Jr[l]r:M[l]l w2
Ny —Ny nr

We have here introduced the reflection coefficient
= Eﬂ‘

r E, (4.25)
and the transmission coefficient &
E;
==L (4.26
E, :
The matrix, known as the transfer matrix
i .
\ _|cos ki v sin k/ am
—im, sin kl cos kI
where n; s theindextmmmk = 2] = ZarnyfNe.
Now suppose that we have N layers numbered 1. 2, 3 5 v 5 oV
having indices of refraction ny, ny, fig, . . . ny and thicknesses [, [,
ls, . . . Iy, respectively. In the same way that we derived Equation

(4.24), we can show that the reflection and transmission coefficients
of the multilayer film are related by a similar matrix equation:

1 I Tie "y aresak
[no] + [_"o] r=M MM, My [nr] t=M [nr] [@.s)

where the transfer matrices of the various layers are denoted by M,,
M,, M, . . . .My Each transfer matrix is of the form given by Equa-
tion (4.27) with appropriate values of #, [, and k. The overall transfer
matrix M is the product of the individual transfer matrices. Let the
elements of M be A, B, C, and D, that is

(4.29)

MMM, - - - M,\,:M=[A B]

C D

We can then solve Equation (4.28) for r and ¢ in terms of these
elements. The result is

= Ang + Bngyng — C — Dny
Ang + Bngng + C+ Dny

(4.30)

2n,
r 3
Anyg+ Bnpng+ C + Dny

(4.31)

The reflectance R and the transmittance T are then given by R = |r?
and T = |1|%, respectively.



Temperature dependence

Frequency (GHz)
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In room temperature, strip has
high resistance (~100kOhm)

!

Kinetic inductance is reduced
and system acts as open circuit



Effect of system dimension
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Summary

1. From the metamaterial having 2DEG Strong negative refractive index was
observed in GHz range.

2. Origin of negative refraction dominantly came from collective motion of
electrons in the strip array which related to kinetic inductance.

3. Temperature and size dependence of n was studied.



