## Interpolation formula for the WLC force versus extension $$\frac{fA}{k_B T} = \frac{z}{L} + \frac{1}{4(1 - z/L)^2} - \frac{1}{4}$$ This is asymptotically exact in the large and small force limits ## **Elasticity and Entropy: the Worm-Like Chain** The Worm-Like chain Model Accounts for Both the Elastic Energy and Entropy of Polymer chain - (a) The undeformed configuration showing that the springs are unstretched, but the links are deprived of entropy because there is only one such possible arrangement of the segment - (b) A deformed configuration showing that there is an energetic cost to bend the chain, but there are more configurations of the systems Partition function $$Z = \int D \overrightarrow{t}(s) \exp \left( -\frac{A}{2} \int_{0}^{L} \left| \frac{d \overrightarrow{t}}{ds} \right|^{2} ds \right)$$ - 1. Draw a curve of length L representing a possible DNA configuration - 2. Evaluate its bending energy $E_{bend} = \frac{Ak_BT}{2} \int_0^L \left| \frac{d\overrightarrow{t}}{ds} \right|^2 ds$ and, the corresponding Boltzmann factor $\exp(-E_{bend}/k_{B}T)$ 3. Repeat 1, 2 for all possible curves celebrated Feynmann path integral All configuration is, $$\langle z \rangle = \frac{1}{Z(f)} \int D \overset{\rightarrow}{t}(s) z \exp \left( -\frac{A}{2} \int_{0}^{L} \left| \frac{d \overset{\rightarrow}{t}}{ds} \right|^{2} ds + f \int_{0}^{L} t_{z} ds \right)$$ Z(f) is the partition function in the presence of the applied force $F = fk_BT$ Rewritten as $$\langle z \rangle = \frac{d \ln Z(f)}{df}$$ Calculate low-, high-force limits Low-force limit $$fA \ll 1$$ Expanded in powers of fA $$Z(f) = \int D \overset{\rightarrow}{t}(s) \{e \operatorname{xp} \left( -\frac{A}{2} \int_{0}^{L} \left| \frac{d \overset{\rightarrow}{t}}{ds} \right|^{2} ds \right) [1 + f \int_{0}^{L} t_{z}(s) ds$$ $$+\frac{f^{2}}{2}\int_{0}^{L}t_{z}(s)ds\int_{0}^{L}t_{z}(u)du+O((fA)^{3})]\}$$ And retain only the first three terms in the expansion $$Z(f) = Z(0) \left[ 1 + f \int_0^L \langle t_z(s) \rangle_0 ds + \frac{f^2}{2} \int_0^L \int_0^L ds du \langle t_z(s) t_z(u) \rangle_0 \right]$$ We obtain this equation $$Z(f) = Z(0) \left( 1 + \frac{f^2 LA}{3} \right)$$ Finally, making use of the relation given in $\langle z \rangle = \frac{d \ln Z(f)}{df}$ we arrive at $$\frac{\langle z \rangle}{L} = \frac{2fA}{3}$$ high-force limit fA >> 1 $$\overrightarrow{t} \approx (t_x, t_y, 1 - \frac{1}{2}(t_x^2 + t_y^2))$$ This approximate expression for the tangent vector turns the formula for the Energy into a quadratic form in tx and ty given by $$E_{tot} = \frac{Ak_BT}{2} \int_0^L ds \left[ \left( \frac{dt_x}{ds} \right)^2 + \left( \frac{dt_y}{ds} \right)^2 \right] + \frac{fk_BT}{2} \int_0^L ds (t_x^2 + t_y^2) - fk_BTL$$ The average extension in the high-force limit is, $$\langle z \rangle = L - \frac{1}{2} \int_0^L ds \left\langle t_x^2 + t_y^2 \right\rangle$$ Fourier component of the tangent vector $$t_{\alpha}(s) = \sum_{w} e^{iws} t_{\alpha}(w) \qquad (\alpha = x, y)$$ Where the frequencies are defined by $w=2\pi j/L$ with j an integer. In Fourier space the energy takes on the form of the potential energy of a collection Of harmonic oscillators, two for each value of the frequency w and given by $$E_{tot} = \frac{Lk_BT}{2} \sum_{w} (Aw^2 + f)(|t_x(w)|^2 + |t_y(w)|^2)$$ This observation allow us to compute the average $|t_{\alpha}(w)|^2$ without explicitly computing the path integral. Which states that the average energy for every quadratic degree of freedom is $k_B T / 2$ $$\left\langle \frac{Lk_BT}{2}(Aw^2+f)\left|t_{\alpha}(w)\right|^2\right\rangle = \frac{k_BT}{2} \qquad (\alpha = x, y)$$ and $$\frac{\langle z \rangle}{L} = 1 - \frac{1}{L} \sum_{w} \frac{1}{Aw^2 + f}$$ $$\sum_{\cdots} \rightarrow L/2\pi \int_{-\infty}^{+\infty}$$ $$\frac{\langle z \rangle}{L} = 1 - \frac{1}{2\sqrt{fA}}$$ $$A = \begin{cases} 3\langle z \rangle / 2fL & fa << 1 \\ 1/[4f(1-\langle z \rangle / L)^2 & fa >> 1 \end{cases}$$