Charge Inversion Phenomenon
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Electric double layer model
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Poisson-Boltzmann theory - diffusive double layer

What is the potential distribution in the solution?? (on the 1:1 salt)
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Poisson-Boltzmann theory - diffusive double layer
€ €
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At room temperature
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linearized Poisson Boltzmann equation (Debye Hickel approximation)
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Poisson-Boltzmann theory - diffusive double layer

e.g. potential versus distance for a surface potential
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IFigure 4.2: Left: Potential-versus-distance for a surface potential of v = 50 mV and different

concentrations of a monovalent salt in water. Right: Local co- and counterion concentrations
are shown for a monovalent salt at a bulk concentration of 0.1 M and a surface potential of
50 mV. In addition, the total concentration of ions, that 1s the sum of the co- and counterion

concentrations, 15 plotted

H. Butt, K. Graf, M Kapple, physics and chemistry of interface, WILEY-VCH (2006)
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Poisson-Boltzmann theory - diffusive double layer

e.g. potential versus distance for a surface potential
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Figure 4.3: Potennal-versus-distance for different surface potentials (50, 100, 150, and 200 mV)
with 20 mM monovalent salt. The full solution Eq. (4.21) and the solution of the linearized
Poisson-Boltzmann Eq. (4.9) are shown.

H. Butt, K. Graf, M Kapple, physics and chemistry of interface, WILEY-VCH (2006)
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Stern layer

somewhat artificial!!

Helmholtz plane (stern layer)

] i Fipure 4.5: Simple version of th
_"'I"I P | ver

H. Butt, K. Graf, M Kapple, physics and chemistry of interface, WILEY-VCH (2006)
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Stern layer
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Figure 4.6: Stern layer at a metal surface. Due to the high electrical conductivity, the potential
in the metal ++p; s constant up to the surface, The inner (IHP) and ouwter (OHP) Helimholtz
planes are indicated. In the first layer of primary bound water the permittivity is typically = = @
In the secondary laver of water it is of the order of = = 3()

H. Butt, K. Graf, M Kapple, physics and chemistry of interface, WILEY-VCH (2006)
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Charge Inversion e.g. - PRL 97, 046102 (2006)
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FIG. 2 (color). Fresnel-normalized x-ray reflectivities, &/ Ky,
of DMPA monolavers at £ = 80 keV (off resonance) and
5486 keV (La Ly resonance) on aqueous LaCl, solutions. For
clarity, subsequent pairs of data sets are offset by a factor of 100
each. Solid lines derive from model fits.
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FIG. 3 (color). VRDF electron density profiles derived from
fits to the experimental data. The off-resonance and on-
resonance data shown in Fig. 2 were corefined with consistent
sets of parameters that deviated only in the effective electron
numbers and absorption cross sections of the Le** component.
Subsequent ED pairs are offset by (L267 JA? for clarity. Sinnilar
ED profiles were derived from a modified box model as de-
scribed in the text. The number density of La* " at the interface
was subsequently obtained from such models via Eq. (2).

Charge Inversion e.g. - PRL 97, 046102 (2006)
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FIG. 4 {color). MNumber of adsorbed La** per DMPA in sur-
face monolayers as a function of bulk LaCl; concentration. Red
plot symbols indicate results at 15 mMN/m derived from the
anomalous reflectivity data pairs shown in Fig. 2 and ED profiles
similar to those shown in Fig. 3. The results indicated by blue
symbols were derived from independent data measured at
8.0 keV alone.
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