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ABSTRACT  Mi based energy transfer (FRET) experiments measure donor and acceptor
intensities by isolating these signals with a series of optical elements. Because this filtering discards portions of the spectrum,
the observed FRET efficiency is dependent on the set of filters in use. Similarty, observed FRET efficiency is also affected by
differences in fluorophore quantum yield. Recovering the absolute FRET efficiency requires nommalization for these effects to
account for differences between the donor and acceptor flucrophores in their quantum yield and detection efficiency. Without
this comection, FRET is consistent across multiple only if the and properties remain
unchanged. Here we present whatis, to our knowlsdge, the first systematic study of methods to recover the trus FRET efficiency
using DNA rulers with known fluorophore separations. We varied optical elements to purposefully alter observed FRET and
examined protein samples to achieve quantum yields distinct from those in the DNA samples. Correction for calculated
instrument fransmission reduced FRET deviations, which can facilitate comparison of results from different instruments.
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FRET basic
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Recovering the absolute FRET
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