Torque Detection using Brownian Fluctuations
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Abstract

We report the statistical analysis of the movement of a submicron particle
confined in a harmonic potential in the presence of a torque. The absolute
value of the torque can be found from the auto- and cross-correlation
functions of the particle’s coordinates. We experimentally prove this analysis
by detecting the torque produced onto an optically trapped particle by an
optical beam with orbital angular momentum.
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We consider a sphere of mass m and radius R
suspended in a liquid medium and confined within a
harmonic potential well, where it moves randomly
due to the thermal excitation

1. An external torque is exerted on the sphere :

balance between the torque applied to the sphere and the drag torque

}

the friction the sphere rotates around the z axis with a constant angular velocity £

Tdrag — T X Fdrag = yr Xv

= yr X (r XQ)
r : sphere’s position \ time average of the torque
v : linear velocity
v = 67TRn: friction coefficient (1) = y(r X (r X Q)) = ¥(Qr?) = yQ{r?)

7 : viscosity



2. The Einstein-Ornstein-Uhlenbeck equations [24] for the Brownian
motion of the sphere in the plane perpendicular to the rotation axis can
now be presented as:

dx(t)
Y dt
dy(t)
dr

+ kx(r) + yQy(t) = 2kgTyn, (1), (1)
+ ky(r) = yQx(1) = \2kgTyn, (1), (2)

k : force constant of the harmonic oscillator

V2kgTyn (1) and 2kgTyn,(1): are two independent white Gaussian random processes
that represent the Brownian forces at temperature T in the x and y direction

d? \(E)
dr

m - neglect all inertial terms (low Reynolds number regime )

[24] M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323 (1945).



The terms +yQy(z) and —y O x(r) introduce a coupling between the
equations.

The auto- and cross-correlation functions for the movement of the
sphere along the x and y directions are given by:

G(x(t + AD) = (D)y(t + Ay = "BTT

()0 + ) =

e KAy cos(QAD), (3)

e kIM/Y gin(QAD). (4)



Experimental setup

Polystyrene spheres
(radius R= 0. 5um)

—— : LG beam

50um

—

X

Harmonic potential well U(x, y)=k/2(X?+Y?)

(k is the restoring force constant or stiffness of
the harmonic oscillator) with a Brownian
particle inside and with an

external torque acting on the particle.

1—trapping 785 nm laser beam (electric field gradient forces)
2—532 nm beam (orbital angular momentum)

3—holographic mask

4—Dove prism

5—100 *1.3NA objective

6—collimating 40 objective

7—quadrant photodetector (QPD)



Position of the sphere in the chamber

(d)

532 nm Laguerre-Gaussian(LG) both the 532 nm and the 785
propagates in the chamber. nm beams propagate in the
chamber.



The trap force constant k is low (0.9 fN/um)

Correlation runctions

FIG. 2 (color online).

1.0 I

Position (um)
=

I‘,l

Nqb

0 20 40
Time (s)

a0\ X

-5 10 05 00 05 10 15 7

v
Yooy o oy J
L QT S v /

\

X (um)

0
At (s)

rotation period : 7, =20=+5s

{orbital radius : =14 *0.3 um
|torque : yQr* =39 £ 1.8 X 102! Nm

friction coéincienty =4 =1 X 1078 Ns/m

Experimental unbiased auto- and cross-

correlation functions in the presence of the torque induced by a
LG beam with / = +10. The trap force constant & is low enough
(0.9 fN/um) not to significantly influence the rotational motion
of the sphere. The continuous lines show the mean values
obtained using one series of data acquisition (acquisition time
60 s, sampling rate f; = 1 kHz). In the insets: (a) time traces for
the x (black) and y (gray) coordinates; (b) histogram of the x
coordinate; (c¢) vector force field acting on the particle in the xy
plane.



The trap force constant k is high (16 fN/um,100uW))

Correlation functions
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FIG. 3 (color online). Experimental auto- and cross-
correlation functions in presence of the torque induced by a
LG beam with / = +10. The trap force constant & is high enough
(16 fN/um) to confine the sphere. The continuous lines show
the mean values obtained using five series of data acquisition
(acquisition time 60 s, sampling rate f; = 1 kHz). The dotted
lines show the fitting to the theoretical shape (the fitting was
made on the central part of the curve for At =[—2 5,2 s]). In
the insets: (a) time traces for the x (black) and y (gray) coor-
dinates; (b) histogram of the x coordinate and in black the fitting
to a Gaussian distribution; (¢) vector force field acting on the
particle in the xy plane.

momentum of the LG beam still affects the
Brownian trajectories.

}

Torque : 49 =0.7 X 1072! Nm



The trap force constant k is high (insert Dove prism)
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FIG. 4 The same as in Fig. 2 when the torque is
produced by a LG with | = -10.

Torque : 3.9 + 0.8 x1072! Nm



conclusion

1. The value of the torques measured (4*10-21Nm)

2. A detailed analysis of the Brownian fluctuations of a
particle trapped in a harmonic potential may be a starting
point to build new tools for the measurement of torque in
micrometric systems

3. Make it possible to study how the torque exerted by a
certain source varies Iin the presence of a controlled
mechanical load









Stokes's drag [edi

The equation for viscous resistance or linear drag iz appropriate for small objects ar particles moving through a fluid at relatively slow speeds where there is

.....

no turbulence (i.e. low Reynolds number, R < 115+ In this case, the force of drag is approximately proportional to velocity, but opposite in direction. [1] & The
equation for viscous resistance is:

F,ri =5 _bv
wihere:

bis a constant that depends on the properties of the fluid and the dimensions of the object, and
v is the velocity of the ohject.

When an object falls from rest, its velocity will be
mg

oft) = ™ (1— ¥im)

which asymptntmally approaches the terminal velocity », = mg/b. For a given &, heavier objects fall faster.

For the special case of small spherical abjects maving slowly through a viscous fluid (and thus at small Reynalds number), George Gabriel Stokes derived an
expression for the drag constant,

b= 6anr
where:
ris the Stokes radius of the particle, and ) is the fluid viscosity.

For example, consider a small sphere with radius r= 0.5 micrometre (diameter = 1.0 pm) moving through water at a velocity v of 10 pmds. Using 107 Pa-s as
the dynamic wiscosity of water in Sl units, we find a drag force of 0.25 phl. This is about the drag force that a bacterium experiences as it swims thraough water,



(— 8 Reynolds number)
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http://en.wikipedia.org/wiki/Wiener%E2%80%93Khinchin_theorem

Power spectral density [edit]

The above definitions of energy spectral density reguire that the Fourier transforms of the signals exist, that is, that the signals are square-integrable or square-
summable. An often more useful alternative is the power spectral density (F=0), which describes how the power of & signal ar time series is distributed with
frequency. Here power can be the actual physical power, or more often, for convenience with abstract signals, can be defined as the squared value of the signal,
that is, as the actual power if the signal was a voltage applied to a 1-ohm load. This instantaneous power (the mean or expected value of which is the average
power] is then given by

2
P =s(t).
since a signal with nonzero average power is not square integrable, the Fourier transforms do not exist in this case. Fortunately, the Wiener—khinchin thearem

pravides a simple alternative. The P30 is the Fourier transform of the autocorrelation function, R, of the signal if the signal can be treated as a stationary
randorm process,

This results in the farmula,

s = [ i R(r)e 217 dr.

The power of the signal in a given frequency band can be calculated by integrating over positive and negative frequencies,

p— f: S(f) df f__ﬁ S(f) df.

2
The power spectral density of a signal exists if and only if the signal is a wide-sense stationary process. If the signal is not stationary, then the autocaorrelation
function must be a function of two variables, so no PSD exists, but similar technigques may be used to estimate a time-varying spectral density.



