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Probability and Statistics

Mean (=expectation, average)
E[X]=22xP(x),

where X={X,,..., Xy }

Variance

Var(X):E[(X —(X)ﬂ:E[xzj—(E[x])z

Probability
R #of 1s 3
P(1)= ==

~ total # of possible outcomes 6

Mean:1+2+1+2+1+3+"":le(l)+2><P(2)+3><P(3)

# of observations

:1><§+2><g+3><l:i
6 6 6 3




Probability and Statistics

Probability

. # of 1s 4
P(1) —

- total # of possible outcomes 12

Conditional Probability

Conditional Probability P(1|B)= P(InB) 1/12 1 P(1] A)= P(InA) 3/12 1

PB) 1/2 6 P(A)  1/2 2

p(xw)zp(s(—Y“)Y)




Probability and Statistics

Series of observations...

Jack said he got = {1
John said he got = {3,

131
1

2,2,1
,2,2,3

Likelihood function




Probability and Statistics

Say, for the first k rolling, he used dice A. And he used dice B for remains.
Here’s the result.

1,3,2,2,1,2,1,1,2,3,3,2,1,3,3, 2,3,

Can you tell when did he change the dice by looking at the observations?

Likelihood ratio test

L, (P (x| chagned the dice at k))
2(N)=In , ) 154
)x]]P(4;1B) L (P(X | didnot changed the dlce))

i=k
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The probability having A given | is
(Poisson statistics)

f(All)=1exp[-I-A]

And the number of photon detected
with in a time interval, T, is

(IT) exp[-IT]]

g(n|T,1)=

To describe many detected photons,
we need likelihood function

N

Ly (A, Ay 1)
= (A 1)xx (A1)

t
|

t t t

I

0 " 2 3"
A B2 Az eI Lol |
] )) ))

The Question is
what is the most likely value of I that gives rise to the
observed inter-photon duration sequence {A,,...,A\}?

=>» Finding | that maximize L,

i1nL=O
A

(94

Like wise, any physical parameters, 6, can be estimated by

ilnL=0
00
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The probability having A given | is t tk

(Poisson statistics) |

f(All)=1exp[-I-A]

0 " 2 3"
A B2 Az eI Lol |
] )) ))

And the number of photon detected
with in a time interval, T, is

g(nIT,I)=(IT) eXI.)[_IT]] L=T1f(a10)

=> Finding 6 that maximize L,

To describe many detected photons, -

we need likelihood function o . _
In may cases, it is convenient to take a logarithm.

L, (Al,...,AN ') Then the Score function is defined by

:f(Al“)X"'Xf(AN“) S(X,@)E%IHL ohere, X ={A,...,A}

Note that 5(X,8,,,)=0




The probability having A given | is
(Poisson statistics)

f(All)=1exp[-I-A]

And the number of photon detected
with in a time interval, T, is

(IT) exp[-IT]]

g(n|T,1)=

To describe many detected photons,
we need likelihood function

N

Ly (A, Ay [T
= (A | 1)x-xf(A]I)

th t1 bty
[A1] B2 Ag [ 8] L]

—f.
T
Now, let’s say there was an intensity change at t, .
Then the probability having A for T; is,
f(Al1})=1;exp|-I;-A]
Then, likelihood function is given by

£(A | |l)><1i[ f(A 1)

K
L, =

1

The problem is that
we don’t know where k locates in an observed data.




. : . : At t tg - 1
The probability having A given | is 0, ‘1 A 2 3 K
(Poisson statistics) | A1| 2 | Ag L (( lAk| |

—

f(All)=1exp[-I-A] T,

And the number of photon detected
with in a time interval, T, is

(IT) exp[-IT]]
g (n |T’ | ) - . Statistical test
the likelihood ratio

If you have two model,

To describe many detected photons,
we need likelihood function { L (
N model 1

\ A(N)=In ,
( ) L LN ( fmodelZ

L, (AI,...,AN \ I)
= (A | 1)x-xf(A]I)
the critical value A(N,a)
with N observables and a confidence interval a.

(A19)
(ara)) ) =)




Photon Counts

10-ms binned trajectory
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To determine the # states . : o
Bayesian Information Criterion

A

60 (A) true trajectory

20! N BIC=n-ln(o-§j+k-ln(n)

(B) 5-ms bin

(C) change-point reconstructio
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1-ms bin Application to the Real single-molecule data

1. Quantum Dot
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single molecule FRET photon burst data
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The probability having A given | is
(Poisson statistics)

f(All)=1exp[-I-A]

And the number of photon detected
with in a time interval, T, is

g(n|T,I):(IT)n

n!

To describe many detected photons,
we need likelihood function

N

Ly (A, Ay [T
= (A | 1)x-xf(A]I)

th t1 bty
[A1] B2 Ag [ 8] L]

L_((

— ) >

T,

=>» Finding 6 that maximize L,

‘l , 62,
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The probability having A given | is
(Poisson statistics)

f(All)=1exp[-I-A]

And the number of photon detected
with in a time interval, T, is

(IT) exp[-IT]]

g(n|T,1)=

To describe many detected photons,
we need likelihood function

N

Ly (A, Ay [T
= (A | 1)x-xf(A]I)

th t1 bty
[A1] B2 Ag [ 8] L]

—

T,

The Fisher information gives
the amount of information contained in a data set.

%m Ly ({2 Ay} %) 2
( J

var(x) > J (X)_1

A

Where the equality is hold when x is calculated using MLE.



Bayes Law

p(BIA)=

p(A)xp(B|A)=p(A,B)=p(B)xp(A|B)

p(B)x p(A! B)

p(B|A)= o(A)




