
Tight Binding Based modelling of bilayer graphene 

 

1. Tight binding theory 

When electron is tightly bounded to nucleus, it is useful to express wavefunction in terms of one 

atom wavefunction basis. 

The wavefunction with band index j satisfying the Bloch condition can be expressed as 
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where N is total number of unit cells and p is the index for atom type in the unit cell and iR  is 

a lattice vector. pδ  describes the position of atom p in the unit cell and p
p δR ,  is the one 

atom  orbital wavefunction of atom p  centered on pi δR  . In case of bilayer graphene, we 

are only interested in  orbital electron. Thus I omitted the summation over energy level of one 

atom. The lattice structure of bilayer graphene is described below. 

 

 



From the figure, you can see that p can be A1, B1, A2, B2. Then p’th bloch function is given by  
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Using p’th bloch function, total wavefunction can be written as 
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In order to determine )(kp
jc , the wavefunction is inserted into Schrödinger equation 
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By using eqn (3), one gets 
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Acting 'p
k  gives 
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This can be written as matrix form 
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Matrix element of Ĥ  and Ŝ  is given by 
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2. Approximations in tight binding  

So far, everything is exact. Here comes the approximation. First, We assume that IŜ  , i.e., the 

overlap between one atom wavefunctions centered on different position is ignored. Then equation 

(7) becomes usual eigenvalue problem. 
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Second, when we calculate the component of Ĥ , we only consider interaction between the 

nearest neighbors, i.e., pi
pHp

p δRδ  ,ˆ
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
 is 0 unless 'pδ  and pi δR   are the nearest 

neighbors. 

 

3. Bilayer graphene band structure 

Now we are ready to calculate band structure of bilayer graphene. From the figure below, the 

lattice vectors of the bilayer graphene lattice are given by 
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Since there are four atoms in the basis, there are four Bloch functions. Let’s denote four atoms by 

A1,B1,A2,B2. A1,B2 are in lower plane and A2, B2 are in upper plane. Thus Ĥ  is 4 by 4 matrix and 

the matrix element is given by  
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Here ir  is the vectors connecting the nearest neighbors which are given by 

04030201 )1,0,0(     ,)0,0,
3

1(     ,)0,
2
1,

32
1(     ,)0,

2
1,

32
1( baaa  rrrr             (13) 

Here 0b is the distance between planes. Using (13), )(1 kf and 4rkie can be written as 
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To sum up, energy band are given by eigenvalues of Ĥ  given by 
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In (15) I set 211 2/   (In only causes a shift of eigenvalues). In order to calculate 

band structure the reciprocal vectors have to be known. The reciprocal vectors ib  are calculated 

by requiring ijji 2ba . The reciprocal vectors are found to be 
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From the reciprocal vectors the first Brillouin zone can be found. Below figure is describing 

Brillouin zone. 
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  in the figure is called Dirac point. 
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Graph of band structure is like below. 
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