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Infrared spectroscopy and density functional theory calculations have been applied to
elucidate the hydrogen bonding interactions between water/dimethyl sulfoxide (DMSO) and a
representative  pyridinium-based ionic  liquid, 1-butylpyridinium tetrafluoroborate
([BuPy][BF4]). It has been found that both solvents can interact with the BuPy-+cation
through the aromatic C-H. The strength of the H-bonds involving the aromatic C-H in water 1s
similar to that in pure [BuPy][BF4], but is much stronger in DMSO. For DMSO, when it
forms H-bonds with the BuPy+ cation through its S=O group, its back-side methyl groups act
as electron donors, while the butyl group of the cation acts as an electron acceptor. For water,
when it forms the strong anion-HOH-anion complex, it can also form H-bonds with the
aromatic C-H on the BuPy+ cation. This is different from the imidazolium-based ionic liquid,
where the strong anion-cation interaction and steric hindrance from the alkyls prevent water
molecules from H-bonding with the aromatic C-H other than with the anion.
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Important Facts

» HB shows significant changes on density, viscosity, surface tension,
electrical conductivity, heat capacity, and solubility of IL.

» Addition of water destroy the.......

> 1) 3 D network structure
11) 10nic clusters
111) then into 1onic pairs surrounded by water

1v) ultimately into fully hydrated separated ions

» Complete dissociation in ion pairs in BMIM[BF4] only at 0.0015

» At higher concentration (0.5, 0.6), ILs form clusters and W molecules
interact with the clusters without forming an H-bond network among W



What is excess IR spectroscopy ?

SCHEME 1: Chemical Structures of 1-Butylpyridinium Djifference between the spectrum of a real
Tetrafi borate ([BuPy][BF,4]), H,O, and DMSO : .. :
etrafiuoroborate ([BuPyl[BELD, H,0. an solution and that of the respective ideal solution

under identical conditions
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O g A - absorbance of the mixture
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x1 and x2- mole fractions of components 1 &2.
el*e2*- molar absorption coefficients of the two
components in their pure states.



([BuPy][BF4]) + Water
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Ring C-H.....no change
Increasing water, absorption of all band decreases
Ring C-H shows similar HB in W as in pure [BuPy]BF4
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Negative bands from both ring and alkyl C-H
Alkyl C-H at 2975 cm-! shows positive band....... blue shift
3062 and 3042 also shows positive band.....not occurs in ATR

A- Synchronous 2-d correlation spectroscopy
B- Asynchronous 2-d correlation spectroscopy

more correlation bands in the asynchronous spectrum
positive cross peak at (3098, 2930 cm-') in synchronous
spectrum

positive peak due to the same changing direction of the
absorption coefficients of ring C-H)and alkyl C-H)
asynchronous shown the cross peak (3096, 2936 cm) also
positive



» Inthe presence of IL...2 or 3 new band originates

» »  Decrease in lower wavenumber absorption....decrease number
of H-bonded D20

»  Higher wavenumber new peak....single or more weakly
interacting D20 embedded in IL environment

Number of positive and negative bands occurs shows the
appearance and disappearance of W structure in IL
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ATR IR x(D,0)=0.1032

Absorbance

¢ (Lmol" ecm™)

T T T T T T T T v T T T g _20 T T T T T T T T T T T T T
2800 2700 2600 2500 2400 2300 2200 2100 2800 2700 2600 2500 2400 2300 2200 2100
Wavenumber (cm™) Wavenumber (cm’™)

1. First, at low concentrations, single water molecules are
isolated from each other and embedded in the IL

environment TABLE 1: Assignments of the Absorption Bands in the
O—D Stretching Vibrational Region Based on Published
Studies'***?” and Our DFT Calculations

2. Then, as the water content increases, the water clusters

. . . : be
form. When the size of the clusters is big enough (x(D20)  “eahy assignment abbreviation
> 04), some tetrahedral H-bonded D20 molecules ~2704 v,. of D;0 doubly H-bonded to BF," v,
appear_ 2680—2660 terminal OD of self-associated D:O clusters, Ve
H-bonded to BFy
~26350 HDO formed by H/D isotope exchange v
; _ ; ~2604 v, of D;O doubly H-bonded to BF,~ vy
3. Finally, the self-associated D20 clulsters bu’F not 25402440 self-associated DO clusters o
tetrahedral H-bonded D20 become dominant at highest 24002370 tetrahedrally H-bonded D,O o

water concentrate



Theoretical possible geometry

> H-bonds can exist between C2,6-H, C3,5-
H, or C4-H on the pyridinium ring and the O
atom of H20

> first conformer is the most stable

y > Energy difference 7 KJ/mol

9

12.105 , _

: » all the C-H on ring can form H-bonds with W

:
—34.38 kJ mol -1

Result is distinct from the
interactions between
imidazolium ring and water

-333.9i kJ mol -1 -371 .75 kJ mol-1 -375.71 kJ mol~"'
Thermal energy = KT
water can form H-bonds 2.48 kJ/mol
with the anion and the cation of 0.60 kcal/mol

[BuPy][BF4] simultaneously



([BuPy]|[BF4]) + DMSO
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>  Ring C-H.....red shifted o
> In water it was.
> DMSO and water show different influence on cation
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..blue shifted

» negative excess bands at higher wavenumbers are due to the
red shift of the IR bands
» ring C-H is the direct interaction for dmso

B- Asynchronous 2-d correlation spectroscopy

» A- Synchronous 2-d correlation spectroscopy

» 3140 and 2965 cm-' two representative bands...ring and alkyl

According to Noda’s rule, negative cross peak in both spectra
suggest that the absorption coefficient of ring C-H varies prior to
that of alkyl C-H with increasing DMSO-d6 content



Blue shifted by 14.3 and 7.2 cm™!
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> ring C-H, the significant increase in molar absorptivity

Agreement to red shift

» no spectroscopic evidence shows the alkyl C-H acts

as preferential interaction sites
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—74.21 kJ mol~" -60.05 kJ mol™* -384.32 kJ mol ™" —388.37 kJ mol "

Figure 10. Possible positions and corresponding interaction energies for a DMSO molecule interacting with BuPy " cation (A and B) and [BuPy][BF;]
(C and D). H-bonds involving DMSO molecules are denoted by dashed lines, those between the anions and cations are denoted by dotted lines, and

the corresponding H+++O and H---F distances are labeled in angstroms.
SCHEME 2: Charge Transfer Model of the Alkyl
Groups upon H-Bonding between DMSO and BuPy™
TABLE 2: Natural Population Analysis Charges (g, in e) of Cation?
the Methyl and Butyl Groups in the Monomers and Their
Changes (Ag) upon Formation of BuPy'—DMSO (Figure
10A.B) and [BuPy][BF,|-DMSO (Figure 10C,D) Complexes

Ag
Figure Figure Figure Figure
g(monomer) 10A 10B 10C 10D
2CH; (DMS0) —0.238 0.091 0.071 0.068 0.072
Cy4Hy (BuPy™) 0.354 —0.008 —0.013
C4Hy ([BuPy] 0.346 —0.011  —0.006

[BE,])
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Conclusions

Water molecules preferentially interact with the BF4 - anion, while DMSO can also interact with the
anion through weak H-bonds of its methyl groups. Both water and DMSO can interact with the BuPy+
cation, and the favorable sites are the aromatic C-H with slight differences based on their specific
positions on the ring.

A charge transfer model of the alkyl groups upon H-bonding between DMSO and BuPy+ cation has
been proposed. The alkyl groups linked to the H-bond acceptor are electron-donating, while those

connected to the H-bond donor are electron-withdrawing, both making positive contributions to the
stability of the H-bond.

The strong anion-HOH-anion interaction can be accompanied by the H-bond between the O atom of
water molecule and the aromatic C-H of the cation in [BuPy][BF4].



