Debye-Huckel theory for
Interfacial geometries

Roland R. Netz

The Debyve-Huckel theory for bulk electrolyte solutions is generalized to planar interfacial geometries

mcluding screening effects due to mobile salt ions which are confined to the interface and solutions with in
general different salt concentrations and dielectric constants on the two sides of the interface. We calculate the

general Debye-Huckel interaction between fixed test charges, and analyze a number of relevant special cases as

applicable to charged colloids and charged polymers._Salty interfaces. which are experimentally realized by
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Likewise, the effective interactions between charged particles are strongly modified in the neighborhood of
such a salty interface. On the other hand, charged particles which are immersed 1n a salt solution are repelled
from the air (or a substrate) interface, and the interaction between two charges decays algebraically close to
such an interface. These general results have experimentally measurable consequences for the adsorption of
charged colloids or charged polymers at monolayers, solid substrates, and interfaces.



|ntroduction — DH theory
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Sterm . Diffuse double layer
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PB theory describe the potential
> distribution of the electrolyte
solution near the interface
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DH potential — Solution of PB equation in linearized case
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For uniform, diluted monovalent ion case: Spherical symmetry
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|ntroduction — DH theory I

Solve this inhomogeneous PDE,
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Because DH theory has linear relation, superposition principle is valid.
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But with interface, ,‘,
DH theory shou!d be modified P I
due to polarization charges

at the interface. (b) @
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FIG. 1. Charged colloidal particle interacting with (a) a salty
plane. and (b) a salty half-space. In both cases, polarization charges
of opposite sign gather near the colloidal particle and lead to a
strong attraction to the interface.



M odification

“

Mobile salt ion distributions at the upper, lower,
interface are given as,

M. different type of n; ionswith chargeq; (j=1.2,...,.M.)
M_ different type of n; ionswith chargeq; (j=1,2,....M_)

M_ different type of n; ionswith chargeq; (j=1.2,...,.M_)

And satisfy the Electroneutrality
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And locate test charges at R carry Q condi

Partition function of system produced by electrostatic potential is,
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M odification

In equation, coulomb operator v(r,r’) is,

‘Classical electrodynamics, John David Jackson Chapter4’
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By using image charge method,(in cylindrical coordinates)
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M odification
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And charge density operator,oA(r) IS given by,
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M odification

After Hubbard—Stratonovich transformation, the partition function
is up to second order fluctuating field @ is given as,
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where Z,, isthe partition function of inverse coulomb operétor,
Z, < \/det(V), Sisided entropy mixing
K. ,K_,k_ : screening length about upper, lower, in plane
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After shifting the fluctuating field? , linear terms of 9 in (8) is

removed and the effective free energy term of n test particle can
be separated.



M odification
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After Fourier transformation of V,,(r) in plane direction and adjust the canonical relation between V,,(,r)
and it’s inverse we can set the differential equation and solve it for each regions.
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M odification Result
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These results are can be applied in various

situation

Ex) metallic half plane, air water interface,
lipid bilayer immersed in salt solution:---.



Application (limit case)

® First check the conversion to the classical DH theory (bulk solution)

(x, = k_,k_ =0, and no dielectiric jump, £=¢)
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® In metallic half space,] — <°
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From here we can define the
W, o e self energy of test charge
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Application (Self energy)
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So, interface strongly attracts
any kind of charges
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Interface strongly repel any kind
of charges



Application (salty interface)

a) Thin lipid bilayer immersed in solution ,#7=1and x, =x_ =k

V3 (z,z,p) = +27l [ —K e—(ZZ)x/K2+p2]
DH 4 4
JEE+p? 2K+ PP+ i

dTo 2rpdp +27l -K o1 0P
VE(D) = | —=V (2,2, p) = B G
> j(2 )2 ‘[(27?)2 JEE+P% 2K+ pP + K

¢ By definition of incomplete Gamma function,

"T'(0, X) = j:’rle-fdt " set (t- K =2zJK2 + p*, X = Z(k_ + 2K))

£ nk

VElz)=— == -T[0z(xk_+2K)],  (24)

forz< (k. +2x)"

Vs

g _g T E
erl:"[ N ¢ BK=F
DH=/ 2z({re_+2 k)

.4

) Always attractive
forz> (k_+2k)"

£k
> £ pK =
Vi 7) = ——In[z(k-+2k)]




Application (salty interface)

b) Monolayer at air / water interface ,n =0
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It has some different behavior with ratio between kK_.,K



Application (salty interface)
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FIG. 2. Rescaled self-energy of a charged particle as a function
of the rescaled distance from the salty mterface. x 1s the inverse
screening length in the bulk, and x_ 1s the mn-plane screening
length. Shown are results for (a) matching dielectric constants on
both sides of the mterface. e=&"', and (b} vamishing dielectric con-
stant on the other side of the interface, £’ =0. The screening length
ratios are k- /k=1, 5, 10, and 30, from top to bottom.

a) Bilayer case : always
attractive

b) Monolayer,air/water
interface : have some
minima if xk. >«



Application (polymer)

Polyelectrolyte polymer can be regarded as line charge

1
Recall A{Ry}1=5

Make continuous distribution and do transformation,
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then self energy for polymer is given as,
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For large and small separation from wall, self energy is asymptotically,
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forz>x

forz<x ™

Attraction and repulsion
rely on the charge
density ratio

Attraction and repulsion
rely on the dielectric
constant ratio



Conclusion

(® Debye-Huckel theory can be modified if we consider screening effect at
the boundary

(® Separate partition function with test charge and system by field
theoretical approach, define the self energy of test charge

(® For high dielectric constant ratio, in the case of metallic half space,
there is attractive interaction with interface and test charge

(® For low dielectric constant ratio, in the case of air / water interface,
attraction and repulsion depend on salt concentration ratio between
interface and bulk



Limitation

(® Debye-Huckel theory fit well in low concentration of salt.
It means that higher correction PB equation should be considered.

(® The system was restricted that summation of charge in each region is
zero and the salt ions are confined.

(® Mutual interaction between test charges should be considered carefully
If the interface strongly attract them
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