

NMR

• Spectroscopy is the study of the interaction of electromagnetic radiation with matter. **Nuclear magnetic resonance spectroscopy** is the use of the NMR phenomenon to study physical, chemical, and biological properties of matter.

What it can measure:

Chemical structure of molecules Diffusion coefficients Relaxation time

Application areas:

Petroleum Exploration Food Pulp and Paper Industry Medicine

¹H-NMR Spectroscopy

Background and Theory

- •Protons has "spin" (I)
- •Rotation of charged particle creates magnetic field
- •In absence of external influence, magnetic poles (spin axis) randomly oriented
- •Add external magnetic field (\mathbf{B}_{0}): spins align

No external magnetic field Spin alignment random

With external magnetic field Spins aligned

Nuclear Spin Flip

- •m = +1/2 parallel to $\mathbf{B_o}$ (lower energy); m = -1/2 antiparallel to $\mathbf{B_o}$ (higher energy)
- •Addition of energy results in nuclear spin flip

 $\frac{\text{Ground state}}{\text{Nuclear spin parallel to } \textbf{B}_{o}}$ $\frac{Lower\ energy}{}$

 $\frac{\text{Excited state}}{\text{Nuclear spin antiparallel to } \mathbf{B_o}}$ $\frac{\text{Higher energy}}{\text{Higher energy}}$

Nuclear Spin Flip

Precession orbit of nuclear mass (Precession angular velocity w_0)

Spinning charge in proton generates magnetic dipole moment

Proton precess in a magnetic field B_0

Nuclear Spin Flip

$$+\Delta E$$
 $-\Delta E$

$$\Delta E = h \, \nu_0 = \frac{h \gamma B_0}{2\pi}$$

 γ is the magnetogyric ratio

v₀ is the frequency of electromagnetic radiation

h is Plancks constant

Excited State

Magnetic Field Controls ΔE

 \bullet ΔE influenced by magnetic field strength at nucleus

$$\Delta E = h v_0 = \frac{h \gamma B_0}{2\pi}$$

$$m = -1/2$$

Small magnetic field \rightarrow small ΔE

Large magnetic field \rightarrow large ΔE

$$m = +1/2$$

Magnetic field strength at nucleus

Energy required for spin flip (ΔE)

Information about magnetic field strength at nucleus

Information about chemical structure

Relaxation Processes

•m = +1/2 parallel to $\mathbf{B_o}$ (lower energy); m = -1/2 antiparallel to $\mathbf{B_o}$ (higher energy)

 $\frac{\text{Ground state}}{\text{Nuclear spin parallel to } \textbf{B}_{o}}$ $\frac{Lower\ energy}{}$

 $\frac{\text{Excited state}}{\text{Nuclear spin antiparallel to } \mathbf{B_o}}$ $\frac{\text{Higher energy}}{\text{Higher energy}}$

Relaxation Processes

- Spin-lattice relaxation
- Spin-spin relaxation

Spin-lattice relaxation:

Energy is transferred to the molecular framework, the lattice, and is lost as vibrational or translational energy.

Contributing factors to this type of relaxation are **temperature**, **solution viscosity**, **structure**, and **molecular size**.

Relaxation Processes

• Spin-spin relaxation

Energy is transferred to a neighboring nucleus, which have the identical precessional frequencies but differing magnetic quantum states.

Lower energy

Higher energy

$$m = + 1/2$$

$$m = -1/2$$

Contributing factor:

Inhomogeneity of the magnetic field

The presence of paramagnetic materials

Chemical shift

Resonance Condition:

$$\omega_0 = 2\pi v_0 = \gamma B_0$$

 \mathcal{V}_0 Larmor frequency

magnetic moment

Chemical shift

1.electronegativity

Depending on their chemical environment, protons in a molecule are shielded by different amounts.

Magnetic field produced by circulating electron

more shielded, absorb at a higher field H-C-Ö:

When the shielded of the shiel

The NMR Graph

increasing magnetic field strength (B_0) \longrightarrow

HNMR

Hydrogen bonds in imidazolium ring are weakened with increasing water concentration

Chemical shift

2. Magnetic anisotropy

Aromatic Protons, δ 7- δ 8

Acetylenic Protons, δ 2.5

Spin-Spin Coupling

Methyl peak is split into three, with the ratio areas 1:2:1

Methylene peak is split into four, with the ratio areas 1:3:3:1

The NMR Spectrometer

