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Abstract: We investigated specific ion effects on interfacial water structure next to macromolecules with
vibrational sum frequency spectroscopy (VSFS). Poly-(N-isopropylacrylamide) was adsorbed at the air/
water interface for this purpose. It was found that the presence of salt in the subphase could induce the
reorganization of water adjacent to the macromolecule and that the changes depended greatly on the
specific identity and concentration of the salt employed. Ranked by their propensity to orient interfacial
water molecules, sodium salts could be placed in the following order: NaSCN = NaClO4 = Nal = NaNOs
== NaBr = NaCl = pure water == NaF = Na>504. This ordering is a Hofmeister series. On the other hand,
varying the identity of the cation exhibited virtually no effect. We also showed that the oscillator strength
in the OH stretch region was linearly related to changes in the surface potential caused by anion adsorption.
This fact allowed binding isotherms to be abstracted from the V5FS data. Such results offer direct evidence
that interfacial water structure can be predominantly the consequence of macromolecule—ion interactions.
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Experimental Schematic

isopropyl group

Figure 1. Schematic diagram of the expenimental setup for using VSFS to
monitor PINIPAM at the air/'water interface. The structure of PINIPAM 15
also shown.
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Results
VSFG Spectral Features
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Figure 2. VSES spectrum of PNIPAM at (a) the D:0/awr mterface and (b) the H2O/air interface.
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Results

Effect of Anion Identity

Figure 3. (a) VSFS spectra show specific anion effects on PNIPAM
adsorbed at the air/water interface. Each subphase contamned 1 M of a given

a) DE :ZSFON salt as indicated in the legend except for NaF and Na;SOs; which are
- Nal measured with saturated solutions (~0.8 M for both salts). (b) The same
%71 e :::rc'; experiments repeated with D20. The spectra are offset for clarity.
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not good
Effect of Chaotropic Anion Concentration
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Figure 5. The relative oscillator strength of the 3200 cm™! peak vs anion
concentration in the subphase. The lines are Langmuir isotherm fits to the
data. The fit for perchlorate is denoted by a dashed line as it is obviously
not as good as for the other anions.

Figure 4. VSFS spectra of the air PINIPAM/aqueous interface as a functi
of sodmm thiocyanate concentration in the subphase.

- BmaxC / KD,app Table 1. Dissociation Constants of Anions to PNIPAM
1+C/ KD,app SCN-  Clos- - NOs  Br cr
Ko app (M) 0.031 0.016 0.048 0.20 0.30 0.76
. Buax (au) 043 0.37 0.35 0.22 0.22 0.15
OS : oscillator strenght Komemse M) 019 015 050 38 40 15

C : chaotropic anion concentration
B« - OS maximum value at infinite concentration

Ko, app - @Pparent equilibrium dissociation constant
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Surface potential
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Figure 6. Correlation between the surface potential and the oscillator
strength for the 3200 cm™! peak. The solid circles are 1 M salt concentrations
of the Hofmeister salts except for sulfate and fluonide which were ~0.8 M.
The open circles and open triangles represent various concentrations of

NaSCN and NaClOs. respectively. The average error bar for each data point
15 £14 mV.

Table S1. Oscillator Strengths of Water Peaks as well as Relative Surface Potential Values for

Air/PNIPAM/Aqueous Systems with 1 M Salt (~0.8 M for NaF and Na,SOy) Table S2. Relative Surface Potential Values of the Air/PNIPAM/Aqueous System with Varying

Concentrations of NaSCN and NaClOy in the Subphase. (unit: mV)

NaSCN  NaClO, Nal NaNO; NaBr NaCl NaF Na,SO,

. 0.01IM  0.03M 0.1M 0.3M 0.6M IM 1.5M M
Oscillator 3200 co’ 0.58 0.52 0.48 0.32 0.30 0.23 0.14 0.14
NaSCN -16 -35 -54 -66 -60 -69 -60 -66
Strength (a.u) 3400 cm 0.35 0.31 0.30 0.22 0.24 0.22 0.15 0.15 N (x18) (£15) (£13) (=12) (+12) (+9) (£13) (z11)
-69 -58 -60 -22 -33 -8 13 4 -24 -36 -51 -G8 -59 -58 -58 -47
ASurface Potential (m'V) NaClOy

(£8) (12) (#23)  (x10)  (215)  (£12)  (219)  (217) #13) (1§ @12 1§ @4 @#2)  (#H6) (*9)




Results
Effect of Cations
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Figure 52, VSFS spectra of the air/PNIPANM/Aqueous interface as a function of cation identity.
All experiments were conducted with 1 M CI', This dictated using lower molar concentrations of
MgCl; and CacCl;. Other choices such as keeping the cation concentration or the ionic strength
constant would, of course, have been possible. However, these were judged to be less desirable
because changes in CI' concentration have a non-negligible effect on the water structure (Figure
4a). It would have also been possible to use F or SDf’ salts: however, many of these salts have

only limited solubility in aqueous solution. The spectra are offset to avoid crowding
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lon Adsorption Isotherms and Gouy-Chapman-Stern Theory
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Figure 7. Concentration dependence of the surface potential predicted by O4 = (8| &y kT) sinh
Gouy— Chapman— Stern theory for anion adsorption. N, is set at 5 x 10 2KT
cm™ 2. The solution is assumed to contain only the anion and its counterion.

both of which are monovalent. o4 - net charge density in the diffuse double layer

oy +0, =0
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lon Adsorption Isotherms and Gouy-Chapman-Stern Theory
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Figure 8. Changes m the surface potential as a function of salt concentration
in the subphase. The lines represent fits using the Gouy—Chapman—Stern
model. The fit for perchlorate is represented by a dashed line to emphasize
the fact that 1t does not fit nearly as well.

Table 1. Dissociation Constants of Anions to PNIPAM

SCN- Cl0s I- NO;~ Br- CI~
Kp app (M) 0.031 0.016 0.048 0.20 0.30 0.76
Brax (au) 0.43 0.37 0.35 22 022 0.15

KD inwrinsie (M)~ 0.19 0.15 0.50 3.8 4.0 15
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lon Adsorption Isotherms and Gouy-Chapman-Stern Theory
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Figure 8. Change in surface potential as a function of WaCl04 concentration
in the aqueous subphase. The solid line is a fit to the modified Gouy—
Chapman— Stern model from eq 5. 6. and 7.
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Figure S1. VSFS spectra of the air/PNIPAM/aqueous interface as a function of pH. The acidic
and basic solutions were prepared by adding HCI and NaOH, respectively, with no additional
salts. The spectrum of pure water is the same as the one in Figure 2b. The spectra are offset for

clarity.



